Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
376
result(s) for
"Lunar bases."
Sort by:
Advances in Solidification Technologies of Lunar Regolith-Based Building Materials Under Extreme Lunar Environments
2025
With the launch of the Artemis program and the International Lunar Research Station project, the construction of lunar bases has emerged as a global research focus. In situ manufacturing technologies for robust lunar regolith-based building materials are critical to ensuring building safety under the Moon’s extreme environmental conditions. This paper reviews the relevant advancements in two areas: solidification technologies for lunar regolith-based construction materials and simulation techniques of extreme lunar environments. This review reveals that, although significant advancements have been made in solidification technologies, the development of lunar environment simulation technologies, particularly for 1/6 g gravity, has lagged, thereby hindering the assessment of the in situ applicability of these solidification methods. To address these limitations, this paper introduces a newly developed comprehensive lunar extreme environment simulation system based on superconducting magnetic suspension technology and its potential applications in lunar regolith-based construction material solidification. This review highlights the current progress and challenges in solidification techniques for lunar regolith-based building materials, aiming to enhance researchers’ attention to the extreme environmental conditions on the lunar surface.
Journal Article
Space 2069 : after Apollo: back to the Moon, to Mars, and beyond
by
Whitehouse, David, author
in
Manned space flight History.
,
Lunar bases Forecasting.
,
Space flight to Mars Forecasting.
2020
Half a century after Apollo 11 we have still not returned to the Moon, but that is about to change. The thirteenth person to walk on the Moon could soon be part of a crew establishing a base on the lip of a crater at the lunar south pole. The discovery of ice in the eternal shadows of the polar regions transforms our ability to live on the Moon. From bases on the Moon we can make the long, lonely and dangerous voyage to Mars, where there is also ice. The obstacles are many, not least the fragilities of the human body. And what type of world would the first Mars explorers find?
Lunar Regolith Geopolymer Concrete for In-Situ Construction of Lunar Bases: A Review
2024
The construction of lunar bases represents a fundamental challenge for deep space exploration, lunar research, and the exploitation of lunar resources. In-situ resource utilization (ISRU) technology constitutes a pivotal tool for constructing lunar bases. Using lunar regolith to create geopolymers as construction materials offers multiple advantages as an ISRU technique. This paper discusses the principle of geopolymer for lunar regolith, focusing on the reaction principle of geopolymer. It also analyzes the applicability of geopolymer under the effects of the lunar surface environment and the differences between the highland and mare lunar regolith. This paper summarizes the characteristics of existing lunar regolith simulants and the research on the mechanical properties of lunar regolith geopolymers using lunar regolith simulants. Highland lunar regolith samples contain approximately 36% amorphous substances, the content of silicon is approximately 28%, and the ratios of Si/Al and Si/Ca are approximately 1.5 and 2.6, respectively. They are more suitable as precursor materials for geopolymers than mare samples. The compressive strength of lunar regolith geopolymer is mainly in the range of 18~30 MPa. Sodium silicate is the most commonly utilized activator for lunar regolith geopolymers; alkalinity in the range of 7% to 10% and modulus in the range of 0.8 to 2.0 are suitable. A vacuum environment and multiple temperature cycles reduce the mechanical properties of geopolymers by 8% to 70%. Future research should be concentrated on the precision control of the lunar regolith’s chemical properties and the alkali activation efficacy of geopolymers in the lunar environment.
Journal Article
Experimental Study on Geopolymerization of Lunar Soil Simulant under Dry Curing and Sealed Curing
2024
The construction of lunar surface roads is conducive to improving the efficiency of lunar space transportation. The use of lunar in situ resources is the key to the construction of lunar bases. In order to explore the strength development of a simulated lunar soil geopolymer at lunar temperature, geopolymers with different sodium hydroxide (NaOH) contents were prepared by using simulated lunar regolith materials. The temperature of the high-temperature section of the moon was simulated as the curing condition, and the difference in compressive strength between dry curing and sealed curing was studied. The results show that the high-temperature range of lunar temperature from 52.7 °C to 76.3 °C was the suitable curing period for the geopolymers, and the maximum strength of 72 h was 6.31 MPa when the NaOH content was 8% in the sealed-curing mode. The 72 h strength had a maximum value of 6.87 MPa when the NaOH content was 12% under dry curing. Choosing a suitable solution can reduce the consumption of activators required for geopolymers to obtain unit strength, effectively reduce the quality of materials transported from the Earth for lunar infrastructure construction, and save transportation costs. The microscopic results show that the simulated lunar soil generated gel substances and needle-like crystals under the alkali excitation of NaOH, forming a cluster and network structure to improve the compressive strength of the geopolymer.
Journal Article
Lunar Regolith Improvement by Inducing Interparticle Adhesion with Capillary Forces
by
Sokołowska, Joanna Julia
,
Przybyszewski, Bartłomiej
,
Brzeziński, Karol
in
3-D printers
,
Adhesion
,
Astronauts
2025
This paper concerns the assessment of the lunar regolith ability to consolidate in the presence of liquid water and develop and sustain cohesion after drying. This type of cohesion originates from interparticle adhesion and can be potentially improved through grading modification. The research was conducted using the lunar regolith simulant (EAC-1A) reproducing the PSD of real lunar soil delivered from the Moon. LRS was subjected to water and elevated temperature (equal to the highest temperature on the Moon) to produce specimens of consolidated material, CCR (Capillary-Consolidated Regolith) and to test flexural strength. In order to adapt to potentially small stresses, tests were performed according to the modified EN 196-1 procedure intended for Portland cement testing: specimens scaled to 20 mm × 20 mm × 80 mm (new molds with Polytetrafluoroethylene/Teflon® coatings reducing adhesion were created), supports spacing in the three-point flexural test reduced to 50 mm and apparatus adjusted to precisely apply small loads. CCR developed flexural strength exceeding 0.025 MPa. Then, analogous tests were performed using LRS subjected to grinding in a disc mill prior to consolidation. It was shown that simple mechanical grinding enabled the improvement of interparticle adhesion with capillary forces, resulting in improved flexural strength of the consolidated material (0.123 MPa).
Journal Article