Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
604 result(s) for "Lyme Disease - etiology"
Sort by:
Predicting the risk of Lyme borreliosis after a tick bite, using a structural equation model
Understanding and quantification of the risk of Lyme borreliosis after a tick bite can aid development of prevention strategies against Lyme borreliosis. We used 3,525 single tick bite reports from three large prospective studies on the transmission risk of tick-borne pathogens to humans, with 50 reports of Lyme borreliosis during the follow-up period, among 1,973 reports with known outcome. A structural equation model was applied to estimate the risk of Lyme borreliosis after a tick bite, and quantify the influence of: developmental stage of the tick, detection of Borrelia burgdorferi s.l. DNA in the tick by PCR, tick engorgement, patient-estimated duration of tick attachment, and patient age. The overall risk of developing Lyme borreliosis after a tick bite was 2.6% (95%CI 1.4-5.1). The risk increased with: - Tick engorgement: 1.4% (95%CI 0.7%-2.3%) for low engorgement to 5.5% (95%CI 2.8%-9.2%) for substantially engorged ticks;- Rising patient-estimated tick attachment duration: 2.0% (95%CI 1.3%-2.8%) after <12 hours, to 5.2% (95%CI 3.0%-8.9%) after ≥4 days;- Detection of Borrelia burgdorferi s.l. DNA in ticks: 6.7% (95%CI 3.6%-13.5%), versus 1.4% (95%CI 0.7%-2.9%) when ticks tested negative.The highest observed risk of Lyme borreliosis was 14.4% (95%CI 6.8%-24.6%) after one tick bite of a substantially engorged tick that tested positive for Borrelia burgdorferi s.l. DNA, which corresponds to one new case of Lyme borreliosis per 7 (95%CI 4-15) of such tick bites. An individual's risk of Lyme borreliosis after a tick bite can be predicted with tick engorgement, patient-estimated duration of tick attachment, and detection of Borrelia burgdorferi s.l. DNA in the tick.
Risk Factors for and Seroprevalence of Tickborne Zoonotic Diseases among Livestock Owners, Kazakhstan
Crimean-Congo hemorrhagic fever (CCHF), Q fever, and Lyme disease are endemic to southern Kazakhstan, but population-based serosurveys are lacking. We assessed risk factors and seroprevalence of these zoonoses and conducted surveys for CCHF-related knowledge, attitudes, and practices in the Zhambyl region of Kazakhstan. Weighted seroprevalence for CCHF among all participants was 1.2%, increasing to 3.4% in villages with a known history of CCHF circulation. Weighted seroprevalence was 2.4% for Lyme disease and 1.3% for Q fever. We found evidence of CCHF virus circulation in areas not known to harbor the virus. We noted that activities that put persons at high risk for zoonotic or tickborne disease also were risk factors for seropositivity. However, recognition of the role of livestock in disease transmission and use of personal protective equipment when performing high-risk activities were low among participants.
The emergence of Lyme disease
Since its identification nearly 30 years ago, Lyme disease has continued to spread, and there have been increasing numbers of cases in the northeastern and north central US. The Lyme disease agent, Borrelia burgdorferi, causes infection by migration through tissues, adhesion to host cells, and evasion of immune clearance. Both innate and adaptive immune responses, especially macrophage- and antibody-mediated killing, are required for optimal control of the infection and spirochetal eradication. Ecological conditions favorable to the disease, and the challenge of prevention, predict that Lyme disease will be a continuing public health concern.
Evidence assessments and guideline recommendations in Lyme disease: the clinical management of known tick bites, erythema migrans rashes and persistent disease
Evidence-based guidelines for the management of patients with Lyme disease were developed by the International Lyme and Associated Diseases Society (ILADS). The guidelines address three clinical questions - the usefulness of antibiotic prophylaxis for known tick bites, the effectiveness of erythema migrans treatment and the role of antibiotic retreatment in patients with persistent manifestations of Lyme disease. Healthcare providers who evaluate and manage patients with Lyme disease are the intended users of the new ILADS guidelines, which replace those issued in 2004 (Exp Rev Anti-infect Ther 2004;2:S1-13). These clinical practice guidelines are intended to assist clinicians by presenting evidence-based treatment recommendations, which follow the Grading of Recommendations Assessment, Development and Evaluation system. ILADS guidelines are not intended to be the sole source of guidance in managing Lyme disease and they should not be viewed as a substitute for clinical judgment nor used to establish treatment protocols.
Prevalence and determinants of persistent symptoms after treatment for Lyme borreliosis: study protocol for an observational, prospective cohort study (LymeProspect)
Background After antibiotic treatment of Lyme borreliosis, a subset of patients report persistent symptoms, also referred to as post-treatment Lyme disease syndrome. The reported prevalence of persistent symptoms varies considerably, and its pathophysiology is under debate. The LymeProspect study has been designed to investigate the prevalence, severity, and a wide range of hypotheses on the etiology of persistent symptoms among patients treated for Lyme borreliosis in the Netherlands. Methods LymeProspect is a prospective, observational cohort study among adults with proven or probable Lyme borreliosis, either erythema migrans or disseminated manifestations, included at the start of antibiotic treatment. During one year of follow-up, participants are subjected to questionnaires every three months and blood is collected repeatedly during the first three months. The primary outcome is the prevalence of persistent symptoms after treatment, assessed by questionnaires online focusing on fatigue (CIS, subscale fatigue severity), pain (SF-36, subscale pain) and neurocognitive dysfunction (CFQ). Potential microbiological, immunological, genetic, epidemiological and cognitive-behavioral determinants for persistent symptoms are secondary outcome measures. Control cohorts include patients with long-lasting symptoms and unconfirmed Lyme disease, population controls, and subjects having reported a tick bite not followed by Lyme borreliosis. Discussion This article describes the background and design of the LymeProspect study protocol. This study is characterized by a prospective, explorative and multifaceted design. The results of this study will provide insights into the prevalence and determinants of persistent symptoms after treatment for Lyme borreliosis, and may provide a rationale for preventive and treatment recommendations. Trial registration NTR4998 (Netherlands Trial Register). Date of registration: 13 February 2015.
Masting by beech trees predicts the risk of Lyme disease
Background The incidence of Lyme borreliosis and other tick-borne diseases is increasing in Europe and North America. There is currently much interest in identifying the ecological factors that determine the density of infected ticks as this variable determines the risk of Lyme borreliosis to vertebrate hosts, including humans. Lyme borreliosis is caused by the bacterium Borrelia burgdorferi sensu lato (s.l.) and in western Europe, the hard tick Ixodes ricinus is the most important vector. Methods Over a 15-year period (2004–2018), we monitored the monthly abundance of I. ricinus ticks (nymphs and adults) and their B. burgdorferi s.l. infection status at four different elevations on a mountain in western Switzerland. We collected climate variables in the field and from nearby weather stations. We obtained data on beech tree seed production (masting) from the literature, as the abundance of Ixodes nymphs can increase dramatically 2 years after a masting event. We used generalized linear mixed effects models and AIC-based model selection to identify the ecological factors that influence inter-annual variation in the nymphal infection prevalence (NIP) and the density of infected nymphs (DIN). Results We found that the NIP decreased by 78% over the study period. Inter-annual variation in the NIP was explained by the mean precipitation in the present year, and the duration that the DNA extraction was stored in the freezer prior to pathogen detection. The DIN decreased over the study period at all four elevation sites, and the decrease was significant at the top elevation. Inter-annual variation in the DIN was best explained by elevation site, year, beech tree masting index 2 years prior and the mean relative humidity in the present year. This is the first study in Europe to demonstrate that seed production by deciduous trees influences the density of nymphs infected with B. burgdorferi s.l. and hence the risk of Lyme borreliosis. Conclusions Public health officials in Europe should be aware that masting by deciduous trees is an important predictor of the risk of Lyme borreliosis. Graphical Abstract
Knowledge and Knowledge Needs about Lyme Disease among Occupational and Recreational Users of the Outdoors
As the prevalence of Lyme disease increases across Canada, it is imperative that the educational needs of at-risk groups be identified. The current study compared the level of knowledge and the knowledge needs about Lyme disease among individuals that spend time outdoors for work and for recreational purposes. Between December 2018 and February 2019, a survey was distributed to outdoor organizations across New Brunswick, Canada. Within the current sample of 137 individuals, 36% spent time outdoors for their occupation and 64% for recreational activities. Results showed no significant difference between these groups with regard to their level of knowledge, perceived efficacy and performance of various methods of prevention, and educational needs. Overall, the entire sample reported a low level of knowledge about Lyme disease. Participants perceived each prevention behavior to be at least somewhat effective, and behaviors perceived to be more effective were more likely to be carried out, but the performance of the behaviors varied. The most frequently performed behaviors included wearing long pants and protective footwear. Participants identified several aspects of Lyme disease about which they would like to have more information. The findings call attention to the specific needs of at-risk groups that must be considered when developing educational interventions.
IMPACT OF HOST COMMUNITY COMPOSITION ON LYME DISEASE RISK
The drivers of variable disease risk in complex multi-host disease systems have proved very difficult to identify. Here we test a model that explains the entomological risk of Lyme disease (LD) in terms of host community composition. The model was parameterized in a continuous forest tract at the Cary Institute of Ecosystem Studies (formerly the Institute of Ecosystem Studies) in New York State, USA. We report the results of continuing longitudinal observations (10 years) at the Cary Institute, and of a shorter-term study conducted in forest fragments in LD endemic areas of Connecticut, New Jersey, and New York, USA. Model predictions were significantly correlated with the observed nymphal infection prevalence (NIP) in both studies, although the relationship was stronger in the longer-term Cary Institute study. Species richness was negatively, albeit weakly, correlated with NIP (logistic regression), and there was no relationship between the Shannon diversity index (H′) and NIP. Although these results suggest that LD risk is in fact dependent on host diversity, the relationship relies explicitly on the identities and frequencies of host species such that conventional uses of the term biodiversity (i.e., richness, evenness, H′) are less appropriate than are metrics that include species identity. This underscores the importance of constructing interaction webs for vertebrates and exploring the direct and indirect effects of anthropogenic stressors on host community composition.
The Ecology of Infectious Disease: Effects of Host Diversity and Community Composition on Lyme Disease Risk
The extent to which the biodiversity and community composition of ecosystems affect their functions is an issue that grows ever more compelling as human impacts on ecosystems increase. We present evidence that supports a novel function of vertebrate biodiversity, the buffering of human risk of exposure to Lyme-disease-bearing ticks. We tested the Dilution Effect model, which predicts that high species diversity in the community of tick hosts reduces vector infection prevalence by diluting the effects of the most competent disease reservoir, the ubiquitous white-footed mouse (Peromyscus leucopus). As habitats are degraded by fragmentation or other anthropogenic forces, some members of the host community disappear. Thus, species-poor communities tend to have mice, but few other hosts, whereas species-rich communities have mice, plus many other potential hosts. We demonstrate that the most common nonmouse hosts are relatively poor reservoirs for the Lyme spirochete and should reduce the prevalence of the disease by feeding, but rarely infecting, ticks. By accounting for nearly every host species' contribution to the number of larval ticks fed and infected, we show that as new host species are added to a depauperate community, the nymphal infection prevalence, a key risk factor, declines. We identify important \"dilution hosts\" (e.g., squirrels), characterized by high tick burdens, low reservoir competence, and high population density, as well as \"rescue hosts\" (e.g., shrews), which are capable of maintaining high disease risk when mouse density is low. Our study suggests that the preservation of vertebrate biodiversity and community composition can reduce the incidence of Lyme disease.
Lactobacilli and other gastrointestinal microbiota of Peromyscus leucopus, reservoir host for agents of Lyme disease and other zoonoses in North America
The cricetine rodent Peromyscus leucopus is an important reservoir for several human zoonoses, including Lyme disease, in North America. Akin to hamsters, the white-footed deermouse has been unevenly characterized in comparison to the murid Mus musculus. To further understanding of P. leucopus' total genomic content, we investigated gut microbiomes of an outbred colony of P. leucopus, inbred M. musculus, and a natural population of P. leucopus. Metagenome and whole genome sequencing were combined with microbiology and microscopy approaches. A focus was the genus Lactobacillus, four diverse species of which were isolated from forestomach and feces of colony P. leucopus. Three of the species-L. animalis, L. reuteri, and provisionally-named species \"L. peromysci\"-were identified in fecal metagenomes of wild P. leucopus but not discernibly in samples from M. musculus. L. johnsonii, the fourth species, was common in M. musculus but absent or sparse in wild P. leucopus. Also identified in both colony and natural populations were a Helicobacter sp. in feces but not stomach, and a Tritrichomonas sp. protozoan in cecum or feces. The gut metagenomes of colony P. leucopus were similar to those of colony M. musculus at the family or higher level and for major subsystems. But there were multiple differences between species and sexes within each species in their gut metagenomes at orthologous gene level. These findings provide a foundation for hypothesis-testing of functions of individual microbial species and for interventions, such as bait vaccines based on an autochthonous bacterium and targeting P. leucopus for transmission-blocking.