Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
31,698
result(s) for
"Lymphocytes - drug effects"
Sort by:
Diversity and clonal selection in the human T-cell repertoire
2014
T-cell receptor (TCR) diversity, a prerequisite for immune system recognition of the universe of foreign antigens, is generated in the first two decades of life in the thymus and then persists to an unknown extent through life via homeostatic proliferation of naïve T cells. We have used next-generation sequencing and nonparametric statistical analysis to estimate a lower bound for the total number of different TCR beta (TCRB) sequences in human repertoires. We arrived at surprisingly high minimal estimates of 100 million unique TCRB sequences in naïve CD4 and CD8 T-cell repertoires of young adults. Naïve repertoire richness modestly declined two-to fivefold in healthy elderly. Repertoire richness contraction with age was even less pronounced for memory CD4 and CD8 T cells. In contrast, age had a major impact on the inequality of donai sizes, as estimated by a modified Gini-Simpson index clonality score. In particular, large naïve T-cell clones that were distinct from memory clones were found in the repertoires of elderly individuals, indicating uneven homeostatic proliferation without development of a memory cell phenotype. Our results suggest that a highly diverse repertoire is maintained despite thymic involution; however, peripheral fitness selection of T cells leads to repertoire perturbations that can influence the immune response in the elderly.
Journal Article
A reappraisal of CTLA-4 checkpoint blockade in cancer immunotherapy
2018
It is assumed that anti-CTLA-4 antibodies cause tumor rejection by blocking negative signaling from B7-CTLA-4 interactions. Surprisingly, at concentrations considerably higher than plasma levels achieved by clinically effective dosing, the anti-CTLA-4 antibody Ipilimumab blocks neither B7 trans-endocytosis by CTLA-4 nor CTLA-4 binding to immobilized or cell-associated B7. Consequently, Ipilimumab does not increase B7 on dendritic cells (DCs) from either
CTLA4
gene humanized (
Ctla4
h/h
) or human CD34
+
stem cell-reconstituted NSG™ mice. In
Ctla4
h/m
mice expressing both human and mouse
CTLA4
genes, anti-CTLA-4 antibodies that bind to human but not mouse CTLA-4 efficiently induce Treg depletion and Fc receptor-dependent tumor rejection. The blocking antibody L3D10 is comparable to the non-blocking Ipilimumab in causing tumor rejection. Remarkably, L3D10 progenies that lose blocking activity during humanization remain fully competent in inducing Treg depletion and tumor rejection. Anti-B7 antibodies that effectively block CD4 T cell activation and de novo CD8 T cell priming in lymphoid organs do not negatively affect the immunotherapeutic effect of Ipilimumab. Thus, clinically effective anti-CTLA-4 mAb causes tumor rejection by mechanisms that are independent of checkpoint blockade but dependent on the host Fc receptor. Our data call for a reappraisal of the CTLA-4 checkpoint blockade hypothesis and provide new insights for the next generation of safe and effective anti-CTLA-4 mAbs.
Journal Article
Potent Anti-Inflammatory Activity of Ursolic Acid, a Triterpenoid Antioxidant, Is Mediated through Suppression of NF-κB, AP-1 and NF-AT
by
Checker, Rahul
,
Patwardhan, Raghavendra S.
,
Sharma, Deepak
in
Acids
,
Activation
,
Activator protein 1
2012
Ursolic acid (UA), a pentacyclic triterpenoid carboxylic acid, is the major component of many plants including apples, basil, cranberries, peppermint, rosemary, oregano and prunes and has been reported to possess antioxidant and anti-tumor properties. These properties of UA have been attributed to its ability to suppress NF-κB (nuclear factor kappa B) activation. Since NF-κB, in co-ordination with NF-AT (nuclear factor of activated T cells) and AP-1(activator protein-1), is known to regulate inflammatory genes, we hypothesized that UA might exhibit potent anti-inflammatory effects.
The anti-inflammatory effects of UA were assessed in activated T cells, B cells and macrophages. Effects of UA on ERK, JNK, NF-κB, AP-1 and NF-AT were studied to elucidate its mechanism of action. In vivo efficacy of UA was studied using mouse model of graft-versus-host disease. UA inhibited activation, proliferation and cytokine secretion in T cells, B cells and macrophages. UA inhibited mitogen-induced up-regulation of activation markers and co-stimulatory molecules in T and B cells. It inhibited mitogen-induced phosphorylation of ERK and JNK and suppressed the activation of immunoregulatory transcription factors NF-κB, NF-AT and AP-1 in lymphocytes. Treatment of cells with UA prior to allogenic transplantation significantly delayed induction of acute graft-versus-host disease in mice and also significantly reduced the serum levels of pro-inflammatory cytokines IL-6 and IFN-γ. UA treatment inhibited T cell activation even when added post-mitogenic stimulation demonstrating its therapeutic utility as an anti-inflammatory agent.
The present study describes the detailed mechanism of anti-inflammatory activity of UA. Further, UA may find application in the treatment of inflammatory disorders.
Journal Article
Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets
2016
Tumor cell-derived exosomes (TEX) suppress functions of immune cells. Here, changes in the gene profiles of primary human T lymphocytes exposed
in vitro
to exosomes were evaluated. CD4
+
Tconv, CD8
+
T or CD4
+
CD39
+
Treg were isolated from normal donors’ peripheral blood and co-incubated with TEX or exosomes isolated from supernatants of cultured dendritic cells (DEX). Expression levels of 24–27 immune response-related genes in these T cells were quantified by qRT-PCR. In activated T cells, TEX and DEX up-regulated mRNA expression levels of multiple genes. Multifactorial data analysis of ΔCt values identified T cell activation and the immune cell type, but not exosome source, as factors regulating gene expression by exosomes. Treg were more sensitive to TEX-mediated effects than other T cell subsets. In Treg, TEX-mediated down-regulation of genes regulating the adenosine pathway translated into high expression of CD39 and increased adenosine production. TEX also induced up-regulation of inhibitory genes in CD4
+
Tconv, which translated into a loss of CD69 on their surface and a functional decline. Exosomes are not internalized by T cells, but signals they carry and deliver to cell surface receptors modulate gene expression and functions of human T lymphocytes.
Journal Article
Low-dose interleukin-2 treatment selectively modulates CD4+ T cell subsets in patients with systemic lupus erythematosus
Low-dose IL-2 treatment alters the abundance of regulatory T cells, IL-17-producing T cells and follicular helper T cells, but not of T helper type 1 and 2 cells, in patients with SLE.
Systemic lupus erythematosus (SLE) is a potentially life-threatening autoimmune disease characterized by altered balance of activity between effector and regulatory CD4
+
T cells. The homeostasis of CD4
+
T cell subsets is regulated by interleukin (IL)-2, and reduced production of IL-2 by T cells is observed in individuals with SLE. Here we report that treatment with low-dose recombinant human IL-2 selectively modulated the abundance of regulatory T (T
reg
) cells, follicular helper T (T
FH
) cells and IL-17-producing helper T (T
H
17) cells, but not T
H
1 or T
H
2 cells, accompanied by marked reductions of disease activity in patients with SLE.
Journal Article
Simultaneous inhibition of two regulatory T-cell subsets enhanced Interleukin-15 efficacy in a prostate tumor model
by
Waldmann, Thomas A
,
Fasso, Marcella
,
Zhang, Meili
in
Adenocarcinoma
,
administration & dosage
,
Amino Acid Sequence
2012
IL-15 has potential as an immunotherapeutic agent for cancer treatment because of its ability to effectively stimulate CD8 T cell, natural killer T cell, and natural killer cell immunity. However, its effectiveness may be limited by negative immunological checkpoints that attenuate immune responses. Recently a clinical trial of IL-15 in cancer immunotherapy was initiated. Finding strategies to conquer negative regulators and enhance efficacy of IL-15 is critical and meaningful for such clinical trials. In a preclinical study, we evaluated IL-15 combined with antibodies to block negative immune regulator cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed death ligand 1 (PD-L1) in an established murine transgenic adenocarcinoma of mouse prostate (TRAMP)-C2 prostate tumor model. IL-15 treatment resulted in a significant prolongation of survival in tumor-bearing animals. Coadministration of anti-PD-L1 or anti-CTLA-4 singly with IL-15 did not improve animal survival over that of IL-15 alone. However, simultaneous administration of IL-15 with anti-CTLA-4 and anti-PD-L1 was associated with increased numbers of tumor antigen-specific tetramer-positive CD8 T cells, increased CD8 T-cell tumor lytic activity, augmented antigen-specific IFN-γ release, decreased rates of tumor growth, and improved animal survival compared with IL-15 alone. Furthermore, triple combination therapy was associated with inhibition of suppressive functions of CD4+CD25+ regulatory T cells and CD8+CD122+ regulatory T cells. Thus, simultaneous blockade of CTLA-4 and PD-L1 protected CD4 and/or CD8 T-cell activity from these regulatory T cells. Combining the immune stimulatory properties of IL-15 with simultaneous removal of two critical immune inhibitory checkpoints, we showed enhancement of immune responses, leading to increased antitumor activity.
Journal Article
Blockade of αEβ7 integrin suppresses accumulation of CD8+ and Th9 lymphocytes from patients with IBD in the inflamed gut in vivo
2017
ObjectiveTherapeutically targeting lymphocyte adhesion is of increasing relevance in IBD. Yet, central aspects of the action of antiadhesion compounds are incompletely understood. We investigated the role of αEβ7 and α4β7 integrins and their blockade by vedolizumab and etrolizumab for trafficking of IBD T lymphocytes in an in vivo model of homing to and retention in the inflamed gut.DesignWe explored integrin expression in patients with IBD by flow cytometry and immunohistochemistry, while regulation of integrins was studied in T cell cultures. The functional relevance of integrins was assessed by adhesion assays and a recently established humanised mouse model in dextran sodium sulfate-treated immunodeficient mice.ResultsHigh expression of αEβ7 was noted on CD8+ and CD4+ Th9 cells, while α4β7 was expressed on CD8+, Th2 and Th17 cells. T cell receptor stimulation and transforming growth factor β were key inducers of αEβ7 on human T cells, while butyric acid suppressed αEβ7. In comparison to α4β7 blockade via vedolizumab, blockade of β7 via etrolizumab surrogate antibody superiorly reduced colonic numbers of CD8+ and Th9 cells in vivo after 3 hours, while no difference was noted after 0.5 hours. AEβ7 expression was higher on CD8+ T cells from patients with IBD under vedolizumab therapy.ConclusionsAEβ7 is of key relevance for gut trafficking of IBD CD8+ T cells and CD4+ Th9 cells in vivo and mainly retention might account for this effect. These findings indicate that blockade of αEβ7 in addition to α4β7 may be particularly effective in intestinal disorders with expansion of CD8+ and Th9 cells such as IBD.
Journal Article
Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug
by
Blum, William
,
Byrd, John C.
,
Gribben, John G.
in
Actins - metabolism
,
Animals
,
Antigen Presentation - drug effects
2008
Cancer is associated with immune deficiency, but the biologic basis of this is poorly defined. Here we demonstrate that impaired actin polymerization results in CD4+ and CD8+ T cells from patients with chronic lymphocytic leukemia (CLL) exhibiting defective immunological synapse formation with APCs. Although this synapse dysfunction was in part a result of the CLL cells having poor APC function, defective actin polymerization was also identified in T cells from patients with CLL. We further demonstrate that, following contact with CLL cells, defects in immune synapse formation were induced in healthy allogeneic T cells. This required direct contact and was inhibited by blocking adhesion molecules on CLL B cells. In T cells from patients with CLL and in T cells from healthy individuals that had been in contact with CLL cells, recruitment of key regulatory proteins to the immune synapse was inhibited. Treatment of autologous T cells and CLL cells with the immunomodulating drug lenalidomide resulted in improved synapse formation. These results define what we believe to be a novel immune dysfunction in T cells from patients with CLL that has implications for both autologous and allogeneic immunotherapy approaches and identifies repair of immune synapse defects as an essential step in improving cancer immunotherapy approaches.
Journal Article
Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum
by
Qiu, Peng
,
Finck, Rachel
,
Sachs, Karen
in
Algorithms
,
Antibodies
,
Antigens, Surface - analysis
2011
Flow cytometry is an essential tool for dissecting the functional complexity of hematopoiesis. We used single-cell \"mass cytometry\" to examine healthy human bone marrow, measuring 34 parameters simultaneously in single cells (binding of 31 antibodies, viability, DNA content, and relative cell size). The signaling behavior of cell subsets spanning a defined hematopoietic hierarchy was monitored with 18 simultaneous markers of functional signaling states perturbed by a set of ex vivo stimuli and inhibitors. The data set allowed for an algorithmically driven assembly of related cell types defined by surface antigen expression, providing a superimposable map of cell signaling responses in combination with drug inhibition. Visualized in this manner, the analysis revealed previously unappreciated instances of both precise signaling responses that were bounded within conventionally defined cell subsets and more continuous phosphorylation responses that crossed cell population boundaries in unexpected manners yet tracked closely with cellular phenotype. Collectively, such single-cell analyses provide system-wide views of immune signaling in healthy human hematopoiesis, against which drug action and disease can be compared for mechanistic studies and pharmacologic intervention.
Journal Article
Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy
2019
One of the main challenges for immune checkpoint blockade antibodies lies in malignancies with limited T-cell responses or immunologically “cold” tumors. Inspired by the capability of fever-like heat in inducing an immune-favorable tumor microenvironment, mild photothermal therapy (PTT) is proposed to sensitize tumors to immune checkpoint inhibition and turn “cold” tumors “hot.” Here we present a combined all-in-one and all-in-control strategy to realize a local symbiotic mild photothermal-assisted immunotherapy (SMPAI). We load both a near-infrared (NIR) photothermal agent IR820 and a programmed death-ligand 1 antibody (aPD-L1) into a lipid gel depot with a favorable property of thermally reversible gel-to-sol phase transition. Manually controlled NIR irradiation regulates the release of aPD-L1 and, more importantly, increases the recruitment of tumor-infiltrating lymphocytes and boosts T-cell activity against tumors. In vivo antitumor studies on 4T1 and B16F10 models demonstrate that SMPAI is an effective and promising strategy for treating “cold” tumors.
Mild photothermal therapy can be used to induce a favourable immunological response. In this study, the authors combine a photothermal therapy sensitizer and anti-PD-L1 into a lipid gel and find that, on controlled delivery to tumours, it potentiates anti-PD therapy and boosts anticancer efficacy.
Journal Article