Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
403 result(s) for "Lymphopoiesis - immunology"
Sort by:
Organoids in immunological research
Much of our knowledge regarding the interactions between epithelial tissues and the immune system has been gathered from animal models and co-cultures with cell lines. However, unique features of human cells cannot be modelled in mice, and cell lines are often transformed or genetically immortalized. Organoid technology has emerged as a powerful tool to maintain epithelial cells in a near-native state. In this Review, we discuss how organoids are being used in immunological research to understand the role of epithelial cell–immune cell interactions in tissue development and homeostasis, as well as in diseases such as cancer.Organoid technology has emerged as a powerful tool to maintain epithelial cells in a near-native state that can be used to better understand the interactions between epithelial cells and the immune system in tissue development, homeostasis, infection and cancer.
Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see)
Key Points The cell fate decisions of developing thymocytes are coordinated by interactions with self-peptide–MHC complexes that are displayed by various types of thymic antigen presenting cells (APCs). Different thymic APCs use cell type-specific strategies of self antigen sampling and processing. Cortical thymic epithelial cells (cTECs) use unique proteolytic pathways to generate MHC class I-bound and MHC class II-bound peptides, and these 'private' peptides expressed by cTECs are critical for the positive selection of a fully functional T cell repertoire. Several types of haematopoieteic and non-haematopoietic APCs cooperatively present self antigens for central tolerance induction. Medullary thymic epithelial cells (mTECs) promiscuously express peripheral self antigens and autonomously present these to thymocytes. Different subsets of dendritic cells sample blood-borne and mTEC-derived self antigens within the thymus or transport peripheral self antigens into the thymus. Here, the authors describe the key characteristics of the different antigen-presenting cell (APC) populations that govern T cell development in the thymus. They discuss how the interactions that occur between thymocytes and thymic APCs shape the mature T cell repertoire, and how they subsequently affect the nature of peripheral immune responses. The fate of developing T cells is specified by the interaction of their antigen receptors with self-peptide–MHC complexes that are displayed by thymic antigen-presenting cells (APCs). Various subsets of thymic APCs are strategically positioned in particular thymic microenvironments and they coordinate the selection of a functional and self-tolerant T cell repertoire. In this Review, we discuss the different strategies that these APCs use to sample and process self antigens and to thereby generate partly unique, 'idiosyncratic' peptide–MHC ligandomes. We discuss how the particular composition of the peptide–MHC ligandomes that are presented by specific APC subsets not only shapes the T cell repertoire in the thymus but may also indelibly imprint the behaviour of mature T cells in the periphery.
Glucocorticoids in T cell development, differentiation and function
Glucocorticoids (GCs) are small lipid hormones produced by the adrenals that maintain organismal homeostasis. Circadian and stress-induced changes in systemic GC levels regulate metabolism, cardiovascular and neural function, reproduction and immune activity. Our understanding of GC effects on immunity comes largely from administration of exogenous GCs to treat immune or inflammatory disorders. However, it is increasingly clear that endogenous GCs both promote and suppress T cell immunity. Examples include selecting an appropriate repertoire of T cell receptor (TCR) self-affinities in the thymus, regulating T cell trafficking between anatomical compartments, suppressing type 1 T helper (TH1) cell responses while permitting TH2 cell and, especially, IL-17-producing T helper cell responses, and promoting memory T cell differentiation and maintenance. Furthermore, in addition to functioning at a distance, extra-adrenal (local) production allows GCs to act as paracrine signals, specifically targeting activated T cells in various contexts in the thymus, mucosa and tumours. These pleiotropic effects on different T cell populations during development and immune responses provide a nuanced understanding of how GCs shape immunity.Glucocorticoid treatment is used to suppress the immune system in various disease settings. However, endogenous glucocorticoids are able to promote as well as inhibit different aspects of T cell immunity. Here, the authors discuss the many ways in which T cell responses are shaped by glucocorticoids.
The Roles of Immune Cells in the Pathogenesis of Fibrosis
Tissue injury and inflammatory response trigger the development of fibrosis in various diseases. It has been recognized that both innate and adaptive immune cells are important players with multifaceted functions in fibrogenesis. The activated immune cells produce various cytokines, modulate the differentiation and functions of myofibroblasts via diverse molecular mechanisms, and regulate fibrotic development. The immune cells exhibit differential functions during different stages of fibrotic diseases. In this review, we summarized recent advances in understanding the roles of immune cells in regulating fibrotic development and immune-based therapies in different disorders and discuss the underlying molecular mechanisms with a focus on mTOR and JAK-STAT signaling pathways.
IL-4 together with IL-1β induces antitumor Th9 cell differentiation in the absence of TGF-β signaling
IL-9-producing CD4 + (Th9) cells are a subset of CD4 + T-helper cells that are endowed with powerful antitumor capacity. Both IL-4 and TGF-β have been reported to be indispensable for Th9 cell-priming and differentiation. Here we show, by contrast, that Th9 cell development can occur in the absence of TGF-β signaling. When TGF-β was replaced by IL-1β, the combination of IL-1β and IL-4 efficiently promoted IL-9-producing T cells (Th9 IL-4+IL-1β ). Th9 IL-4+ IL-1β cells are phenotypically distinct T cells compared to classic Th9 cells (Th9 IL-4+TGF-β ) and other Th cells, and are enriched for IL-1 and NF-κB gene signatures. Inhibition of NF-κB but not TGF-β-signaling negates IL-9 production by Th9 IL-4+IL-1β cells. Furthermore, when compared with classic Th9 IL-4+TGF-β cells, Th9 IL-4+IL-1β cells are less exhausted, exhibit cytotoxic T effector gene signature and tumor killing function, and exert a superior antitumor response in a mouse melanoma model. Our study thus describes an alternative pathway for Th9 cell differentiation and provides a potential avenue for antitumor therapies. CD4 + helper T cells producing IL-9 (Th9) have been implicated in anti-tumor immunity, with Th9 differentiation inducible in vitro via IL-4 and TGFβ treatment. Here the authors show that replacing TGFβ with IL-1β induces a distinct IL-9 + CD4 + population that have strong cytotoxic and anti-tumor activity in preclinical mouse models.
ZBTB Transcription Factors: Key Regulators of the Development, Differentiation and Effector Function of T Cells
The development and differentiation of T cells represents a long and highly coordinated, yet flexible at some points, pathway, along which the sequential and dynamic expressions of different transcriptional factors play prominent roles at multiple steps. The large ZBTB family comprises a diverse group of transcriptional factors, and many of them have emerged as critical factors that regulate the lineage commitment, differentiation and effector function of hematopoietic-derived cells as well as a variety of other developmental events. Within the T-cell lineage, several ZBTB proteins, including ZBTB1, ZBTB17, ZBTB7B (THPOK) and BCL6 (ZBTB27), mainly regulate the development and/or differentiation of conventional CD4/CD8 αβ + T cells, whereas ZBTB16 (PLZF) is essential for the development and function of innate-like unconventional γ δ + T & invariant NKT cells. Given the critical role of T cells in host defenses against infections/tumors and in the pathogenesis of many inflammatory disorders, we herein summarize the roles of fourteen ZBTB family members in the development, differentiation and effector function of both conventional and unconventional T cells as well as the underlying molecular mechanisms.
Post-transcriptional coordination of immunological responses by RNA-binding proteins
RNA-binding proteins regulate gene expression by interacting with mRNA and destabilizing it. In this Focus Review, Kontoyiannis and colleagues describe how this class of protein affects various aspects of immunological function. Immunological reactions are propelled by ever-changing signals that alter the translational ability of the RNA in the cells involved. Such alterations are considered to be consequential modifications in the transcriptomic decoding of the genetic blueprint. The identification of RNA-binding protein (RBP) assemblies engaged in the coordinative regulation of state-specific RNAs indicates alternative and exclusive means for determining the activation, plasticity and tolerance of cells of the immune system. Here we review current knowledge about RBP-regulated post-transcriptional events involved in the reactivity of cells of the immune system and the importance of their alteration during chronic inflammatory pathology and autoimmunity.
Bcl11b sets pro-T cell fate by site-specific cofactor recruitment and by repressing Id2 and Zbtb16
Multipotent progenitor cells confirm their T cell–lineage identity in the CD4 – CD8 – double-negative (DN) pro-T cell DN2 stages, when expression of the essential transcription factor Bcl11b begins. In vivo and in vitro stage-specific deletions globally identified Bcl11b-controlled target genes in pro-T cells. Proteomics analysis revealed that Bcl11b associated with multiple cofactors and that its direct action was needed to recruit those cofactors to selective target sites. Regions near functionally regulated target genes showed enrichment for those sites of Bcl11b-dependent recruitment of cofactors, and deletion of individual cofactors relieved the repression of many genes normally repressed by Bcl11b. Runx1 collaborated with Bcl11b most frequently for both activation and repression. In parallel, Bcl11b indirectly regulated a subset of target genes by a gene network circuit via the transcription inhibitor Id2 (encoded by Id2 ) and transcription factor PLZF (encoded by Zbtb16 ); Id2 and Zbtb16 were directly repressed by Bcl11b, and Id2 and PLZF controlled distinct alternative programs. Thus, our study defines the molecular basis of direct and indirect Bcl11b actions that promote T cell identity and block alternative potentials. Bcl11b is needed to establish T cell–lineage identity. Rothenberg and colleagues provide a comprehensive analysis of Bcl11b–cofactor interactions and reveal the functional relevance of direct and indirect Bcl11b binding activity in thymocytes.
Transcription factor EBF1 is essential for the maintenance of B cell identity and prevention of alternative fates in committed cells
Lineage-commitment factors enforce irreversible loss of alternative lineage potentials during development. Grosschedl and colleagues show that EBF1 expression in committed pro-B cells suppresses T cell and innate lymphoid cell potential. The transcription factors EBF1 and Pax5 have been linked to activation of the B cell lineage program and irreversible loss of alternative lineage potential (commitment), respectively. Here we conditionally deleted Ebf1 in committed pro-B cells after transfer into alymphoid mice. We found that those cells converted into innate lymphoid cells (ILCs) and T cells with variable-diversity-joining (VDJ) rearrangements of loci encoding both B cell and T cell antigen receptors. As intermediates in lineage conversion, Ebf1 -deficient CD19 + cells expressing Pax5 and transcriptional regulators of the ILC and T cell fates were detectable. In particular, genes encoding the transcription factors Id2 and TCF-1 were bound and repressed by EBF1. Thus, both EBF1 and Pax5 are required for B lineage commitment by repressing distinct and common determinants of alternative cell fates.