Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,761 result(s) for "Lysosomal storage disorder"
Sort by:
Synthesis of “All-Cis” Trihydroxypiperidines from a Carbohydrate-Derived Ketone: Hints for the Design of New β-Gal and GCase Inhibitors
Pharmacological chaperones (PCs) are small compounds able to rescue the activity of mutated lysosomal enzymes when used at subinhibitory concentrations. Nitrogen-containing glycomimetics such as aza- or iminosugars are known to behave as PCs for lysosomal storage disorders (LSDs). As part of our research into lysosomal sphingolipidoses inhibitors and looking in particular for new β-galactosidase inhibitors, we report the synthesis of a series of alkylated azasugars with a relative “all-cis” configuration at the hydroxy/amine-substituted stereocenters. The novel compounds were synthesized from a common carbohydrate-derived piperidinone intermediate 8, through reductive amination or alkylation of the derived alcohol. In addition, the reaction of ketone 8 with several lithium acetylides allowed the stereoselective synthesis of new azasugars alkylated at C-3. The activity of the new compounds towards lysosomal β-galactosidase was negligible, showing that the presence of an alkyl chain in this position is detrimental to inhibitory activity. Interestingly, 9, 10, and 12 behave as good inhibitors of lysosomal β-glucosidase (GCase) (IC50 = 12, 6.4, and 60 µM, respectively). When tested on cell lines bearing the Gaucher mutation, they did not impart any enzyme rescue. However, altogether, the data included in this work give interesting hints for the design of novel inhibitors.
A very rare cause of protein losing enteropathy: Gaucher disease
Background. Mesenteric lymphadenopathy is a rare manifestation of Gaucher disease (GD) in children and can be accompanied by protein losing enteropathy (PLE). PLE is a difficult-to-treat complication of GD. To date, only a few pediatric GD cases with PLE and massive mesenteric lymphadenopathies have been reported. Case. Here, we report a girl with chronic neuronopathic GD, whose disease course was complicated by massive mesenteric lymphadenopathies with resultant protein losing enteropathy despite a regular and appropriate enzyme replacement therapy of 60 IU/kg/biweekly until the development of mesenteric lymphadenopathies and 120 IU/kg/biweekly thereafter. Conclusions. PLE is a devastating and life threatening complication of GD developing despite long term use of high dose ERT. Clinicians should be alert for this complication particularly in GD patients presenting with progressive abdominal distension, edema, ascites and diarrhea or in patients who have already developed mesenteric lymphadenopathies. Timely diagnosis may allow early intervention with previously suggested surgical or medical treatment options. Although there is no specific and effective treatment, surgical and aggressive medical interventions in addition to ERT were reported to relieve diarrhea and halt progression of mesenteric lymphadenopathies.
The heart in Anderson-Fabry disease and other lysosomal storage disorders
Table 1 Lysosomal storage disease causing cardiac disease Disease group and subtypes General manifestations Cardiac manifestations Glycogen storage diseases (lysosomal) Autosomal recessive Massive LVH and RVH, cardiac failure (only in the infantile form) Myopathy, hypotonia, hepatomegaly, macroglossia cardiopulmonary failure, Short PR, broad QRS; endomyocardial fibrosis Type IIb (Danon disease, LAMP-2 deficiency) X-linked Hypertrophic cardiomyopathy, isolated cardiac variants, short PR, progressive conduction system disease Myopathy, mental retardation Mucopolysaccharidoses IH (Hurler) Autosomal recessive Valvular involvement (thickening, regurgitation, stenosis); endomyocardial infiltration; interstitial infiltration-fibrosis; hypertrophy; systolic dysfunction-dilated cardiomyopathy (less frequent); coronary artery infiltration-stenosis; aortic stenosis (abdominal); arterial hypertension IS (Scheie) X-linked - MPS II (Hunter) II (Hunter) Dysmorphic features, organomegaly, decreased joint mobility, bone deformities, loss of motor skills, mental retardation, corneal clouding, recurrent otitis or pneumonia, hearing loss III (Sanfilippo) IV (Morquio) VI (Maroteaux-Lamy) VII (Sly) IX (Natowicz) Sphingolipidoses Gaucher disease (β-glucocerebrodiase) Autosomal recessive Pulmonary hypertension, cor pulmonale; pericardial effusion (rare); valvular involvement (rare) Chronic non-neuronopathic (type I) Gaucher cells-lipid laden macrophages Acute (type II) Hepatosplenomegaly, anaemia, thrombocytopenia, bone involvement Chronic neuronopathic (type III) Neurodegeneration (neuronopathic forms) Niemann Pick disease (acid sphingomyelinase) Autosomal recessive Endomyocardial fibrosis (very rare) Type A Early onset, neurological involvement, hypotonia, psychomotor retardation (type A), hepatosplenomegaly, pancytopenia, pulmonary involvement Type B Anderson-Fabry disease (α-galactosidase A) X-linked Cardiac hypertrophy; short PR, progressive conduction system dysfunction, arrhythmias; valvular involvement; coronary involvement (decreased coronary reserve) Multiorgan involvement LVH, left ventricular hypertrophy; RVH, right ventricular hypertrophy. [...]many studies have shown that affected women experience symptoms similar to hemizygous males, albeit in a milder form with a delayed onset and slower progression compared to men; similarly, the frequency of end-stage renal disease is much lower and the median cumulative survival greater (70 years vs 50 years) in women. 1 Disease expression in female patients is attributed to random X chromosome inactivation and the incapacity of cells expressing the wild-type allele to cross-correct the metabolic defect. 5 Pathogenesis of cardiac disease in AFD Cross-sectional data in patients of different ages suggest that disease evolution in the heart is characterised initially by myocardial hypertrophy; as the disease progresses interstitial abnormalities and replacement myocardial fibrosis become important.
A Comprehensive Review: Sphingolipid Metabolism and Implications of Disruption in Sphingolipid Homeostasis
Sphingolipids are a specialized group of lipids essential to the composition of the plasma membrane of many cell types; however, they are primarily localized within the nervous system. The amphipathic properties of sphingolipids enable their participation in a variety of intricate metabolic pathways. Sphingoid bases are the building blocks for all sphingolipid derivatives, comprising a complex class of lipids. The biosynthesis and catabolism of these lipids play an integral role in small- and large-scale body functions, including participation in membrane domains and signalling; cell proliferation, death, migration, and invasiveness; inflammation; and central nervous system development. Recently, sphingolipids have become the focus of several fields of research in the medical and biological sciences, as these bioactive lipids have been identified as potent signalling and messenger molecules. Sphingolipids are now being exploited as therapeutic targets for several pathologies. Here we present a comprehensive review of the structure and metabolism of sphingolipids and their many functional roles within the cell. In addition, we highlight the role of sphingolipids in several pathologies, including inflammatory disease, cystic fibrosis, cancer, Alzheimer’s and Parkinson’s disease, and lysosomal storage disorders.
Role of lysosomes in physiological activities, diseases, and therapy
Long known as digestive organelles, lysosomes have now emerged as multifaceted centers responsible for degradation, nutrient sensing, and immunity. Growing evidence also implicates role of lysosome-related mechanisms in pathologic process. In this review, we discuss physiological function of lysosomes and, more importantly, how the homeostasis of lysosomes is disrupted in several diseases, including atherosclerosis, neurodegenerative diseases, autoimmune disorders, pancreatitis, lysosomal storage disorders, and malignant tumors. In atherosclerosis and Gaucher disease, dysfunction of lysosomes changes cytokine secretion from macrophages, partially through inflammasome activation. In neurodegenerative diseases, defect autophagy facilitates accumulation of toxic protein and dysfunctional organelles leading to neuron death. Lysosomal dysfunction has been demonstrated in pathology of pancreatitis. Abnormal autophagy activation or inhibition has been revealed in autoimmune disorders. In tumor microenvironment, malignant phenotypes, including tumorigenesis, growth regulation, invasion, drug resistance, and radiotherapy resistance, of tumor cells and behaviors of tumor-associated macrophages, fibroblasts, dendritic cells, and T cells are also mediated by lysosomes. Based on these findings, a series of therapeutic methods targeting lysosomal proteins and processes have been developed from bench to bedside. In a word, present researches corroborate lysosomes to be pivotal organelles for understanding pathology of atherosclerosis, neurodegenerative diseases, autoimmune disorders, pancreatitis, and lysosomal storage disorders, and malignant tumors and developing novel therapeutic strategies.
Extracellular vesicles in Niemann pick disease type C: current knowledge and future opportunities
Niemann Pick Disease Type C (NPC) is a rare neurodegenerative disease that primarily affects children. It is caused by mutations in the NPC1 or NPC2 genes, which encode proteins that transport cholesterol out of the endolysosomal organelles. Endolysosomal compartments also produce extracellular vesicles (EVs), which have emerged as key players in human disease. There is rapidly growing interest in how NPC cellular pathology impacts EV biology: of the 18 peer-reviewed publications on this topic, 13 were published within the last 5 years. Collectively, the existing literature suggests that the NPC proteins play key roles in EV biogenesis and uptake, that EV concentration and cargo are fundamentally altered in samples with NPC1/2 protein dysfunction, and that EVs may contribute to the therapeutic effects of NPC treatments. To better elucidate the connections between NPC and EVs further research is needed, especially in patient samples. Ultimately, a better understanding of the role of EVs in NPC will likely shed light on basic EV biology, related cellular neuropathologies, and a rare childhood disease that currently has no cure.
The New York pilot newborn screening program for lysosomal storage diseases: Report of the First 65,000 Infants
Purpose We conducted a consented pilot newborn screening (NBS) for Pompe, Gaucher, Niemann–Pick A/B, Fabry, and MPS 1 to assess the suitability of these lysosomal storage disorders (LSDs) for public health mandated screening. Methods At five participating high–birth rate, ethnically diverse New York City hospitals, recruiters discussed the study with postpartum parents and documented verbal consent. Screening on consented samples was performed using multiplexed tandem mass spectrometry. Screen-positive infants underwent confirmatory enzymology, DNA testing, and biomarker quantitation when available. Affected infants are being followed for clinical management and long-term outcome. Results Over 4 years, 65,605 infants participated, representing an overall consent rate of 73%. Sixty-nine infants were screen-positive. Twenty-three were confirmed true positives, all of whom were predicted to have late-onset phenotypes. Six of the 69 currently have undetermined disease status. Conclusion Our results suggest that NBS for LSDs is much more likely to detect individuals at risk for late-onset disease, similar to results from other NBS programs. This work has demonstrated the feasibility of using a novel consented pilot NBS study design that can be modified to include other disorders under consideration for public health implementation as a means to gather critical evidence for evidence-based NBS practices.
Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study
BackgroundFabry disease is an X-linked lysosomal storage disorder caused by GLA mutations, resulting in α-galactosidase (α-Gal) deficiency and accumulation of lysosomal substrates. Migalastat, an oral pharmacological chaperone being developed as an alternative to intravenous enzyme replacement therapy (ERT), stabilises specific mutant (amenable) forms of α-Gal to facilitate normal lysosomal trafficking.MethodsThe main objective of the 18-month, randomised, active-controlled ATTRACT study was to assess the effects of migalastat on renal function in patients with Fabry disease previously treated with ERT. Effects on heart, disease substrate, patient-reported outcomes (PROs) and safety were also assessed.ResultsFifty-seven adults (56% female) receiving ERT (88% had multiorgan disease) were randomised (1.5:1), based on a preliminary cell-based assay of responsiveness to migalastat, to receive 18 months open-label migalastat or remain on ERT. Four patients had non-amenable mutant forms of α-Gal based on the validated cell-based assay conducted after treatment initiation and were excluded from primary efficacy analyses only. Migalastat and ERT had similar effects on renal function. Left ventricular mass index decreased significantly with migalastat treatment (−6.6 g/m2 (−11.0 to −2.2)); there was no significant change with ERT. Predefined renal, cardiac or cerebrovascular events occurred in 29% and 44% of patients in the migalastat and ERT groups, respectively. Plasma globotriaosylsphingosine remained low and stable following the switch from ERT to migalastat. PROs were comparable between groups. Migalastat was generally safe and well tolerated.ConclusionsMigalastat offers promise as a first-in-class oral monotherapy alternative treatment to intravenous ERT for patients with Fabry disease and amenable mutations.Trial registration number:NCT00925301; Pre-results.
Acid ceramidase deficiency: Farber disease and SMA-PME
Acid ceramidase (ACDase) deficiency is a spectrum of disorders that includes a rare lysosomal storage disorder called Farber disease (FD) and a rare epileptic disorder called spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME). Both disorders are caused by mutations in the ASAH1 gene that encodes the lysosomal hydrolase that breaks down the bioactive lipid ceramide. To date, there have been fewer than 200 reported cases of FD and SMA-PME in the literature. Typical textbook manifestations of classical FD include the formation of subcutaneous nodules, accumulation of joint contractures, and development of a hoarse voice. In reality, however, the clinical presentation is much broader. Patients may develop severe pathologies leading to death in infancy or may develop attenuated forms of the disorder wherein they are often misdiagnosed or not diagnosed until adulthood. A clinical variability also exists for SMA-PME, in which patients develop progressive muscle weakness and seizures. Currently, there is no known cure for FD or for SMA-PME. The main treatment is symptom management. In rare cases, treatment may include surgery or hematopoietic stem cell transplantation. Research using disease models has provided insights into the pathology as well as the role of ACDase in the development of these conditions. Recent studies have highlighted possible biomarkers for an effective diagnosis of ACDase deficiency. Ongoing work is being conducted to evaluate the use of recombinant human ACDase (rhACDase) for the treatment of FD. Finally, gene therapy strategies for the treatment of ACDase deficiency are actively being pursued. This review highlights the broad clinical definition and outlines key studies that have improved our understanding of inherited ACDase deficiency-related conditions.
Disease manifestations and burden of illness in patients with acid sphingomyelinase deficiency (ASMD)
Acid sphingomyelinase deficiency (ASMD), a rare lysosomal storage disease, is an autosomal recessive genetic disorder caused by different SMPD1 mutations. Historically, ASMD has been classified as Niemann-Pick disease (NPD) types A (NPD A) and B (NPD B). NPD A is associated with a uniformly devastating disease course, with rapidly progressing psychomotor degeneration, leading to death typically by the age of 3 years, most often from respiratory failure. In contrast, the clinical phenotype and life expectancy of patients with NPD B may vary widely. Almost all patients have hepatosplenomegaly and an atherogenic lipid profile, and most patients have interstitial lung disease with progressive impairment of pulmonary function and hematologic abnormalities including cytopenias. Other common clinical manifestations include liver dysfunction, heart disease, skeletal abnormalities and growth delays. Some patients with ASMD who survive beyond early childhood have intermediate phenotypes (variant NPD B) characterized by combinations of non-neurologic and mild to severe neurologic symptoms. The physical and psychosocial burden of illness in patients with NPD B is substantial. Common symptoms include shortness of breath, joint or limb pain, abdominal pain, bleeding and bruising. The disease often leads to chronic fatigue, limited physical or social activity and difficulties in performing daily activities or work. Many patients die before or in early adulthood, often from pneumonia/respiratory failure or liver failure. Available treatments are limited to symptom management and supportive care. An enzyme replacement therapy currently in clinical development is expected to be the first treatment addressing the underlying pathology of the disease. Early diagnosis and appropriate management are essential for reducing the risk of complications. While knowledge about ASMD is evolving, more evidence about ASMD and the natural history across the disease spectrum is needed, to improve disease recognition, timely diagnosis and appropriate disease management.