Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
10,709
result(s) for
"Lysosomes"
Sort by:
The switch : ignite your metabolism with intermittent fasting, protein cycling, and keto
\"How can you lose dramatic weight, reverse chronic conditions, and stay healthier longer? Flip the switch on your metabolism with intermittent fasting, protein restriction, and ketosis! Lose weight. Reverse Chronic Conditions. Live Healthier Longer. Within each of us is an ancient mechanism that eliminates toxic materials, initiates fat burning, and protects cells against stress. It's called autophagy, and when it's turned on, the complex operation can not only slow down the aging process, but can optimize biological function as a whole, helping to stave off all manner of disease-from diabetes to dementia-and affording us the healthy lifespan we never thought possible. So how can we activate this switch through diet? How frequently should we fast and for how long? Must we abstain from all foods or just specific macronutrients? What's the sweet spot between intermittent fasting, protein restriction, and ketogenic eating? Backed by a wealth of data, and with a practical program anyone can follow for lasting results, The Switch not only decodes the science of autophagy, but also teaches you how to control it and benefit from its profound impact\"-- Provided by publisher.
Lysosomal retargeting of Myoferlin mitigates membrane stress to enable pancreatic cancer growth
2021
Lysosomes must maintain the integrity of their limiting membrane to ensure efficient fusion with incoming organelles and degradation of substrates within their lumen. Pancreatic cancer cells upregulate lysosomal biogenesis to enhance nutrient recycling and stress resistance, but it is unknown whether dedicated programmes for maintaining the integrity of the lysosome membrane facilitate pancreatic cancer growth. Using proteomic-based organelle profiling, we identify the Ferlin family plasma membrane repair factor Myoferlin as selectively and highly enriched on the membrane of pancreatic cancer lysosomes. Mechanistically, lysosomal localization of Myoferlin is necessary and sufficient for the maintenance of lysosome health and provides an early acting protective system against membrane damage that is independent of the endosomal sorting complex required for transport (ESCRT)-mediated repair network. Myoferlin is upregulated in human pancreatic cancer, predicts poor survival and its ablation severely impairs lysosome function and tumour growth in vivo. Thus, retargeting of plasma membrane repair factors enhances the pro-oncogenic activities of the lysosome.Gupta et al. show that the membrane repair factor Myoferlin protects against membrane damage of pancreatic cancer lysosomes to sustain enhanced lysosomal function and promote tumour growth.
Journal Article
The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-Ι
2021
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic and has claimed over 2 million lives worldwide. Although the genetic sequences of SARS-CoV and SARS-CoV-2 have high homology, the clinical and pathological characteristics of COVID-19 differ significantly from those of SARS. How and whether SARS-CoV-2 evades (cellular) immune surveillance requires further elucidation. In this study, we show that SARS-CoV-2 infection leads to major histocompability complex class Ι (MHC-Ι) down-regulation both in vitro and in vivo. The viral protein encoded by open reading frame 8 (ORF8) of SARS-CoV-2, which shares the least homology with SARS-CoV among all viral proteins, directly interacts with MHC-Ι molecules and mediates their down-regulation. In ORF8-expressing cells, MHC-Ι molecules are selectively targeted for lysosomal degradation via autophagy. Thus, SARS-CoV-2–infected cells are much less sensitive to lysis by cytotoxic T lymphocytes. Because ORF8 protein impairs the antigen presentation system, inhibition of ORF8 could be a strategy to improve immune surveillance.
Journal Article
Lysosomes: fusion and function
2007
Key Points
Lysosomes are dynamic organelles that receive membrane traffic input from the secretory, endocytic, autophagic and phagocytic pathways. They can also fuse with the plasma membrane.
Live-cell imaging has shown that lysosomes interact with late endosomes by 'kiss-and-run' events and by direct fusion. Fusion results in the formation of hybrid organelles, in which the degradation of endocytosed macromolecules occurs and from which lysosomes are re-formed.
The use of yeast genetics and mammalian cell-free systems has identified much of the protein machinery that is involved in the delivery of macromolecules to lysosomes. The fusion of late endosomes with lysosomes involves tethering, the formation of
trans
-SNARE (soluble
N
-ethylmaleimide sensitive factor attachment protein receptor) complexes and phospholipid bilayer fusion.
Conventional lysosomes may fuse with the plasma membrane in response to a rise in cytosolic Ca
2+
and can provide the additional membrane required for plasma-membrane wound repair. Specialized secretory lysosomes and lysosome-related organelles exist in some cell types.
Lysosomes may also fuse with phagosomes and autophagosomes. Some phagocytosed pathogens can prevent or delay phagolysosome biogenesis; others escape their intracellular vacuole by degrading the phagosomal membrane and may evade autophagy or reside in autophagic compartments and delay the formation of autolysosomes.
Upregulating autophagic pathways and the formation of autophagolysosomes provides the prospect of therapies for a range of proteinopathies including Huntington's disease and Parkinson's disease.
Far from being a static organelle at the end of the endocytic pathway, the lysosome is capable of dynamically fusing with many organelles as well as the plasma membrane. The lysosome provides hydrolytic enzymes for the degradation of macromolecules, has secretory functions and is important for plasma membrane repair.
Lysosomes are dynamic organelles that receive and degrade macromolecules from the secretory, endocytic, autophagic and phagocytic membrane-trafficking pathways. Live-cell imaging has shown that fusion with lysosomes occurs by both transient and full fusion events, and yeast genetics and mammalian cell-free systems have identified much of the protein machinery that coordinates these fusion events. Many pathogens that hijack the endocytic pathways to enter cells have evolved mechanisms to avoid being degraded by the lysosome. However, the function of lysosomes is not restricted to protein degradation: they also fuse with the plasma membrane during cell injury, as well as having more specialized secretory functions in some cell types.
Journal Article
Lysosome activity is modulated by multiple longevity pathways and is important for lifespan extension in C. elegans
2020
Lysosomes play important roles in cellular degradation to maintain cell homeostasis. In order to understand whether and how lysosomes alter with age and contribute to lifespan regulation, we characterized multiple properties of lysosomes during the aging process in C. elegans. We uncovered age-dependent alterations in lysosomal morphology, motility, acidity and degradation activity, all of which indicate a decline in lysosome function with age. The age-associated lysosomal changes are suppressed in the long-lived mutants daf-2, eat-2 and isp-1, which extend lifespan by inhibiting insulin/IGF-1 signaling, reducing food intake and impairing mitochondrial function, respectively. We found that 43 lysosome genes exhibit reduced expression with age, including genes encoding subunits of the proton pump V-ATPase and cathepsin proteases. The expression of lysosome genes is upregulated in the long-lived mutants, and this upregulation requires the functions of DAF-16/FOXO and SKN-1/NRF2 transcription factors. Impairing lysosome function affects clearance of aggregate-prone proteins and disrupts lifespan extension in daf-2, eat-2 and isp-1 worms. Our data indicate that lysosome function is modulated by multiple longevity pathways and is important for lifespan extension.
Journal Article
Lysosomal adaptation: How cells respond to lysosomotropic compounds
2017
Lysosomes are acidic organelles essential for degradation and cellular homoeostasis and recently lysosomes have been shown as signaling hub to respond to the intra and extracellular changes (e.g. amino acid availability). Compounds including pharmaceutical drugs that are basic and lipophilic will become sequestered inside lysosomes (lysosomotropic). How cells respond to the lysosomal stress associated with lysosomotropism is not well characterized. Our goal is to assess the lysosomal changes and identify the signaling pathways that involve in the lysosomal changes. Eight chemically diverse lysosomotropic drugs from different therapeutic areas were subjected to the evaluation using the human adult retinal pigmented epithelium cell line, ARPE-19. All lysosomotropic drugs tested triggered lysosomal activation demonstrated by increased lysosotracker red (LTR) and lysosensor green staining, increased cathepsin activity, and increased LAMP2 staining. However, tested lysosomotropic drugs also prompted lysosomal dysfunction exemplified by intracellular and extracellular substrate accumulation including phospholipid, SQSTM1/p62, GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) and opsin. Lysosomal activation observed was likely attributed to lysosomal dysfunction, leading to compensatory responses including nuclear translocation of transcriptional factors TFEB, TFE3 and MITF. The adaptive changes are protective to the cells under lysosomal stress. Mechanistic studies implicate calcium and mTORC1 modulation involvement in the adaptive changes. These results indicate that lysosomotropic compounds could evoke a compensatory lysosomal biogenic response but with the ultimate consequence of lysosomal functional impairment. This work also highlights a pathway of response to lysosomal stress and evidences the role of TFEB, TFE3 and MITF in the stress response.
Journal Article
Salinomycin kills cancer stem cells by sequestering iron in lysosomes
2017
Cancer stem cells (CSCs) represent a subset of cells within tumours that exhibit self-renewal properties and the capacity to seed tumours. CSCs are typically refractory to conventional treatments and have been associated to metastasis and relapse. Salinomycin operates as a selective agent against CSCs through mechanisms that remain elusive. Here, we provide evidence that a synthetic derivative of salinomycin, which we named ironomycin (AM5), exhibits a more potent and selective activity against breast CSCs
in vitro
and
in vivo
, by accumulating and sequestering iron in lysosomes. In response to the ensuing cytoplasmic depletion of iron, cells triggered the degradation of ferritin in lysosomes, leading to further iron loading in this organelle. Iron-mediated production of reactive oxygen species promoted lysosomal membrane permeabilization, activating a cell death pathway consistent with ferroptosis. These findings reveal the prevalence of iron homeostasis in breast CSCs, pointing towards iron and iron-mediated processes as potential targets against these cells.
Cancer stem cells are typically refractory to conventional treatments. Now, an unprecedented mechanism has been discovered by which salinomycin and derivatives can sequester iron in lysosomes leading to cytoplasmic iron depletion and the subsequent production of reactive oxygen species that are lethal to the cell. This discovery of the importance of iron in cancer stem cell maintenance provides an opportunity for developing new therapeutics.
Journal Article
Structure of human lysosomal acid α-glucosidase–a guide for the treatment of Pompe disease
by
Parenti, Giancarlo
,
Germany, Stanley
,
Sulzenbacher, Gerlind
in
631/443/319/1642
,
631/45/535/1266
,
692/308/153
2017
Pompe disease, a rare lysosomal storage disease caused by deficiency of the lysosomal acid α-glucosidase (GAA), is characterized by glycogen accumulation, triggering severe secondary cellular damage and resulting in progressive motor handicap and premature death. Numerous disease-causing mutations in the
gaa
gene have been reported, but the structural effects of the pathological variants were unknown. Here we present the high-resolution crystal structures of recombinant human GAA (rhGAA), the standard care of Pompe disease. These structures portray the unbound form of rhGAA and complexes thereof with active site-directed inhibitors, providing insight into substrate recognition and the molecular framework for the rationalization of the deleterious effects of disease-causing mutations. Furthermore, we report the structure of rhGAA in complex with the allosteric pharmacological chaperone N-acetylcysteine, which reveals the stabilizing function of this chaperone at the structural level.
Pompe disease is caused by mutations in lysosomal acid α-glucosidase (GAA) and patients are being treated with recombinant human α-glucosidase (rhGAA). Here the authors present the crystal structures of rhGAA and its complexes with inhibitors and a pharmacological chaperone, which is important for drug development.
Journal Article
Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer’s disease amyloid plaques
by
De Camilli, Pietro
,
Ferguson, Shawn M.
,
Wu, Yumei
in
Accumulation
,
Alzheimer disease
,
Alzheimer Disease - enzymology
2015
Through a comprehensive analysis of organellar markers in mouse models of Alzheimer’s disease, we document a massive accumulation of lysosome-like organelles at amyloid plaques and establish that the majority of these organelles reside within swollen axons that contact the amyloid deposits. This close spatial relationship between axonal lysosome accumulation and extracellular amyloid aggregates was observed from the earliest stages of β-amyloid deposition. Notably, we discovered that lysosomes that accumulate in such axons are lacking in multiple soluble luminal proteases and thus are predicted to be unable to efficiently degrade proteinaceous cargos. Of relevance to Alzheimer’s disease, β-secretase (BACE1), the protein that initiates amyloidogenic processing of the amyloid precursor protein and which is a substrate for these proteases, builds up at these sites. Furthermore, through a comparison between the axonal lysosome accumulations at amyloid plaques and neuronal lysosomes of the wild-type brain, we identified a similar, naturally occurring population of lysosome-like organelles in neuronal processes that is also defined by its low luminal protease content. In conjunction with emerging evidence that the lysosomal maturation of endosomes and autophagosomes is coupled to their retrograde transport, our results suggest that extracellular β-amyloid deposits cause a local impairment in the retrograde axonal transport of lysosome precursors, leading to their accumulation and a blockade in their further maturation. This study both advances understanding of Alzheimer’s disease brain pathology and provides new insights into the subcellular organization of neuronal lysosomes that may have broader relevance to other neurodegenerative diseases with a lysosomal component to their pathology.
Journal Article