Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
30
result(s) for
"Lztr1"
Sort by:
Schwannomatosis: a genetic and epidemiological study
2018
ObjectivesSchwannomatosis is a dominantly inherited condition predisposing to schwannomas of mainly spinal and peripheral nerves with some diagnostic overlap with neurofibromatosis-2 (NF2), but the underlying epidemiology is poorly understood. We present the birth incidence and prevalence allowing for overlap with NF2.MethodsSchwannomatosis and NF2 cases were ascertained from the Manchester region of England (population=4.8 million) and from across the UK. Point prevalence and birth incidence were calculated from regional birth statistics. Genetic analysis was also performed on NF2, LZTR1 and SMARCB1 on blood and tumour DNA samples when available.ResultsRegional prevalence for schwannomatosis and NF2 were 1 in 126 315 and 50 500, respectively, with calculated birth incidences of 1 in 68 956 and 1 in 27 956. Mosaic NF2 causes a substantial overlap with schwannomatosis resulting in the misdiagnosis of at least 9% of schwannomatosis cases. LZTR1-associated schwannomatosis also causes a small number of cases that are misdiagnosed with NF2 (1%–2%), due to the occurrence of a unilateral vestibular schwannoma. Patients with schwannomatosis had lower numbers of non-vestibular cranial schwannomas, but more peripheral and spinal nerve schwannomas with pain as a predominant presenting symptom. Life expectancy was significantly better in schwannomatosis (mean age at death 76.9) compared with NF2 (mean age at death 66.2; p=0.004).ConclusionsWithin the highly ascertained North-West England population, schwannomatosis has less than half the birth incidence and prevalence of NF2.
Journal Article
Diagnostic Pathology of Tumors of Peripheral Nerve
2021
Abstract
Neoplasms of the peripheral nervous system represent a heterogenous group with a wide spectrum of morphological features and biological potential. They range from benign and curable by complete excision (schwannoma and soft tissue perineurioma) to benign but potentially aggressive at the local level (plexiform neurofibroma) to the highly malignant (malignant peripheral nerve sheath tumors [MPNST]). In this review, we discuss the diagnostic and pathologic features of common peripheral nerve sheath tumors, particularly those that may be encountered in the intracranial compartment or in the spine and paraspinal region. The discussion will cover schwannoma, neurofibroma, atypical neurofibromatous neoplasms of uncertain biological potential, intraneural and soft tissue perineurioma, hybrid nerve sheath tumors, MPNST, and the recently renamed enigmatic tumor, malignant melanotic nerve sheath tumor, formerly referred to as melanotic schwannoma. We also discuss the diagnostic relevance of these neoplasms to specific genetic and familial syndromes of nerve, including neurofibromatosis 1, neurofibromatosis 2, and schwannomatosis. In addition, we discuss updates in our understanding of the molecular alterations that represent key drivers of these neoplasms, including neurofibromatosis type 1 and type 2, SMARCB1, LZTR1, and PRKAR1A loss, as well as the acquisition of CDKN2A/B mutations and alterations in the polycomb repressor complex members (SUZ12 and EED) in the malignant progression to MPNST. In summary, this review covers practical aspects of pathologic diagnosis with updates relevant to neurosurgical practice.
Journal Article
An update on the CNS manifestations of neurofibromatosis type 2
by
Rashid, Rumana
,
Stemmer-Rachamimov, Anat
,
Santagata, Sandro
in
Blood vessels
,
Brain cancer
,
Central nervous system
2020
Neurofibromatosis type II (NF2) is a tumor predisposition syndrome characterized by the development of distinctive nervous system lesions. NF2 results from loss-of-function alterations in the
NF2
gene on chromosome 22, with resultant dysfunction of its protein product merlin. NF2 is most commonly associated with the development of bilateral vestibular schwannomas; however, patients also have a predisposition to development of other tumors including meningiomas, ependymomas, and peripheral, spinal, and cranial nerve schwannomas. Patients may also develop other characteristic manifestations such as ocular lesions, neuropathies, meningioangiomatosis, and glial hamartia. NF2 has a highly variable clinical course, with some patients exhibiting a severe phenotype and development of multiple tumors at an early age, while others may be nearly asymptomatic throughout their lifetime. Despite the high morbidity associated with NF2 in severe cases, management of NF2-associated lesions primarily consists of surgical resection and treatment of symptoms, and there are currently no FDA-approved systemic therapies that address the underlying biology of the syndrome. Refinements to the diagnostic criteria of NF2 have been proposed over time due to increasing understanding of clinical and molecular data. Large-population studies have demonstrated that some features such as the development of gliomas and neurofibromas, currently included as diagnostic criteria, may require further clarification and modification. Meanwhile, burgeoning insights into the molecular biology of NF2 have shed light on the etiology and highly variable severity of the disease and suggested numerous putative molecular targets for therapeutic intervention. Here, we review the clinicopathologic features of NF2, current understanding of the molecular biology of NF2, particularly with regard to central nervous system lesions, ongoing therapeutic studies, and avenues for further research.
Journal Article
Incidence of mosaicism in 1055 de novo NF2 cases: much higher than previous estimates with high utility of next-generation sequencing
2020
Purpose
To evaluate the incidence of mosaicism in de novo neurofibromatosis 2 (NF2).
Methods
Patients fulfilling NF2 criteria, but with no known affected family member from a previous generation (
n
= 1055), were tested for
NF2
variants in lymphocyte DNA and where available tumor DNA. The proportion of individuals with a proven or presumed mosaic
NF2
variant was assessed and allele frequencies of identified variants evaluated using next-generation sequencing.
Results
The rate of proven/presumed mosaicism was 232/1055 (22.0%). However, nonmosaic heterozygous pathogenic variants were only identified in 387/1055 (36.7%). When variant detection rates in second generation nonmosaics were applied to de novo cases, we assessed the overall probable mosaicism rate to be 59.7%. This rate differed by age from 21.7% in those presenting with bilateral vestibular schwannoma <20 years to 80.7% in those aged ≥60 years. A mosaic variant was detected in all parents of affected children with a single-nucleotide pathogenic
NF2
variant.
Conclusion
This study has identified a very high probable mosaicism rate in de novo NF2, probably making NF2 the condition with the highest expressed rate of mosaicism in de novo dominant disease that is nonlethal in heterozygote form. Risks to offspring are small and probably correlate with variant allele frequency detected in blood.
Journal Article
Correspondence to editorial on “KCTD17-mediated Ras stabilization promotes hepatocellular carcinoma progression”
2025
KCI Citation Count: 0
Journal Article
Identifying the deficiencies of current diagnostic criteria for neurofibromatosis 2 using databases of 2777 individuals with molecular testing
by
Tobi, Simon
,
King, Andrew T.
,
Axon, Patrick
in
Adolescent
,
Adult
,
Biomedical and Life Sciences
2019
We have evaluated deficiencies in existing diagnostic criteria for neurofibromatosis 2 (NF2).
Two large databases of individuals fulfilling NF2 criteria (n=1361) and those tested for NF2 variants with criteria short of diagnosis (n=1416) were interrogated. We assessed the proportions meeting each diagnostic criterion with constitutional or mosaic NF2 variants and the positive predictive value (PPV) with regard to definite diagnosis.
There was no evidence for usefulness of old criteria “glioma“ or “neurofibroma.” “Ependymoma” had 100% PPV and high levels of confirmed NF2 diagnosis (67.7%). Those with bilateral vestibular schwannoma (VS) alone aged ≥60 years had the lowest confirmation rate (6.6%) and reduced PPV (80%). Siblings as a first-degree relative, without an affected parent, had 0% PPV. All three individuals with unilateral VS and an affected sibling were proven not to have NF2. The biggest overlap was with LZTR1-associated schwannomatosis. In this category, seven individuals with unilateral VS plus ≥2 nondermal schwannomas reduced PPV to 67%.
The present study confirms important deficiencies in NF2 diagnostic criteria. The term “glioma” should be dropped and replaced by “ependymoma.” Similarly “neurofibroma” should be removed. Dropping “sibling” from first-degree relatives should be considered and testing of LZTR1 should be recommended for unilateral VS.
Journal Article
Dysregulated minor intron splicing in cancer
2022
Pre‐mRNA splicing is now widely recognized as a cotranscriptional and post‐transcriptional mechanism essential for regulating gene expression and modifying gene product function. Mutations in genes encoding core spliceosomal proteins and accessory regulatory splicing factors are now considered among the most recurrent genetic abnormalities in patients with cancer, particularly hematologic malignancies. These include mutations in the major (U2‐type) and minor (U12‐type) spliceosomes, which remove >99% and ~0.35% of introns, respectively. Growing evidence indicates that aberrant splicing of evolutionarily conserved U12‐type minor introns plays a crucial role in cancer as the minor spliceosome component, ZRSR2, is subject to recurrent, leukemia‐associated mutations, and intronic mutations have been shown to disrupt the splicing of minor introns. Here, we review the importance of minor intron regulation, the molecular effects of the minor (U12‐type) spliceosomal mutations and cis‐regulatory regions, and the development of minor intron studies for better understanding of cancer biology.
Journal Article
Epigenomic, genomic, and transcriptomic landscape of schwannomatosis
by
Nassiri Farshad
,
Pugh, Trevor J
,
Ostrow, Kimberly
in
Chromosome 22
,
DNA methylation
,
Epigenetics
2021
Schwannomatosis (SWNTS) is a genetic cancer predisposition syndrome that manifests as multiple and often painful neuronal tumors called schwannomas (SWNs). While germline mutations in SMARCB1 or LZTR1, plus somatic mutations in NF2 and loss of heterozygosity in chromosome 22q have been identified in a subset of patients, little is known about the epigenomic and genomic alterations that drive SWNTS-related SWNs (SWNTS-SWNs) in a majority of the cases. We performed multiplatform genomic analysis and established the molecular signature of SWNTS-SWNs. We show that SWNTS-SWNs harbor distinct genomic features relative to the histologically identical non-syndromic sporadic SWNs (NS-SWNS). We demonstrate the existence of four distinct DNA methylation subgroups of SWNTS-SWNs that are associated with specific transcriptional programs and tumor location. We show several novel recurrent non-22q deletions and structural rearrangements. We detected the SH3PXD2A-HTRA1 gene fusion in SWNTS-SWNs, with predominance in LZTR1-mutant tumors. In addition, we identified specific genetic, epigenetic, and actionable transcriptional programs associated with painful SWNTS-SWNs including PIGF, VEGF, MEK, and MTOR pathways, which may be harnessed for management of this syndrome.
Journal Article
LZTR1: c.1260+1del Variant as a Significant Predictor of Early-Age Breast Cancer Development: Case Report Combined with In Silico Analysis
by
Filip, Agata A.
,
Czukiewska, Ewa
,
Wieleba, Irena
in
Adult
,
Breast cancer
,
Breast Neoplasms - diagnosis
2025
According to the guidelines of the American Society of Clinical Oncology (ASCO) and the European Society of Medical Oncology (ESMO), the most significant genetic factor in the diagnosis and treatment of breast cancer is the mutation status of the BRCA1 and BRCA2 genes. Additional genes with a significant influence on cancer risk were selected for genetic panel screening. For these genes, the disease risk score was predicted to be greater than 20%. In clinical practice, it is observed that rare genetic variants have a significant impact in young patients, characterized by increased pathogenesis and a poorer overall prognosis. The ability to predict the potential effects of these rare variants may reveal important information regarding possible phenotypes and may also provide new insights leading to more efficacious treatments and overall improved clinical management. This paper presents the case of a 38-year-old woman with bilateral breast cancer who is likely a carrier of a pathogenic point mutation in the LZTR1 gene (LZTR1: c.1260+1del variant). With this clinical case report herein described, we intend to display the usefulness of performing detailed molecular tests in the field of genetic diagnostics for patients with breast cancer. Understanding the pathogenesis of hereditary cancer development, which is more predictable and reliable than that of sporadic tumors, will allow for the discovery of hitherto hidden intrinsic signaling pathways, facilitating replicable experimentation and thereby expediting the discovery of novel therapeutic treatments.
Journal Article