Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
394
result(s) for
"M2 macrophage polarization"
Sort by:
Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer
2020
Background
Mounting evidence has demonstrated the vital importance of tumor-associated macrophages (TAMs) and exosomes in the formation of the premetastatic niche. However, the molecular mechanisms by which tumor-derived exosomal miRNAs interact with TAMs underlying premetastatic niche formation and colorectal cancer liver metastasis (CRLM) remain largely unknown.
Methods
Transmission electron microscopy and differential ultracentrifugation were used to verify the existence of exosomes. In vivo and in vitro assays were used to identify roles of exosomal miR-934. RNA pull-down assay, dual-luciferase reporter assay, etc. were applied to clarify the mechanism of exosomal miR-934 regulated the crosstalk between CRC cells and M2 macrophages.
Results
In the present study, we first demonstrated the aberrant overexpression of miR-934 in colorectal cancer (CRC), especially in CRLM, and its correlation with the poor prognosis of CRC patients. Then, we verified that CRC cell-derived exosomal miR-934 induced M2 macrophage polarization by downregulating PTEN expression and activating the PI3K/AKT signaling pathway. Moreover, we revealed that hnRNPA2B1 mediated miR-934 packaging into exosomes of CRC cells and then transferred exosomal miR-934 into macrophages. Interestingly, polarized M2 macrophages could induce premetastatic niche formation and promote CRLM by secreting CXCL13, which activated a CXCL13/CXCR5/NFκB/p65/miR-934 positive feedback loop in CRC cells.
Conclusions
These findings indicate that tumor-derived exosomal miR-934 can promote CRLM by regulating the crosstalk between CRC cells and TAMs. These findings reveal a tumor and TAM interaction in the metastatic microenvironment mediated by tumor-derived exosomes that affects CRLM. The present study also provides a theoretical basis for secondary liver cancer.
Journal Article
Macrophage Polarization and Plasticity in Systemic Lupus Erythematosus
2021
Systemic lupus erythematosus (SLE) is an autoimmune disease that attacks almost every organ. The condition mostly happens to adults but is also found in children, and the latter have the most severe manifestations. Among adults, females, especially non-Caucasian, are mostly affected. Even if the etiology of SLE remains unclear, studies show a close relation between this disease and both genetics and environment. Despite the large number of published articles about SLE, we still do not have a clear picture of its pathogenesis, and no specific drug has been found to treat this condition effectively. The implication of macrophages in SLE development is gaining ground, and studying it could answer these gaps. Indeed, both in vivo and in vitro studies increasingly report a strong link between this disease and macrophages. Hence, this review aims to explore the role of macrophages polarization and plasticity in SLE development. Understanding this role is of paramount importance because in-depth knowledge of the connection between macrophages and this systemic disease could clarify its pathogenesis and provide a foundation for macrophage-centered therapeutic approaches.
Journal Article
Targeting Tyro3, Axl and MerTK (TAM receptors): implications for macrophages in the tumor microenvironment
2019
Tumor-associated macrophages are an abundant cell type in the tumor microenvironment. These macrophages serve as a promising target for treatment of cancer due to their roles in promoting cancer progression and simultaneous immunosuppression. The TAM receptors (Tyro3, Axl and MerTK) are promising therapeutic targets on tumor-associated macrophages. The TAM receptors are a family of receptor tyrosine kinases with shared ligands Gas6 and Protein S that skew macrophage polarization towards a pro-tumor M2-like phenotype. In macrophages, the TAM receptors also promote apoptotic cell clearance, a tumor-promoting process called efferocytosis. The TAM receptors bind the “eat-me” signal phosphatidylserine on apoptotic cell membranes using Gas6 and Protein S as bridging ligands. Post-efferocytosis, macrophages are further polarized to a pro-tumor M2-like phenotype and secrete increased levels of immunosuppressive cytokines. Since M2 polarization and efferocytosis are tumor-promoting processes, the TAM receptors on macrophages serve as exciting targets for cancer therapy. Current TAM receptor-directed therapies in preclinical development and clinical trials may have anti-cancer effects though impacting macrophage phenotype and function in addition to the cancer cells.
Journal Article
Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression
2014
Inflammation is now acknowledged as an hallmark of cancer. Cancer-associated fibroblasts (CAFs) force a malignant cross talk with cancer cells, culminating in their epithelial–mesenchymal transition and achievement of stemness traits. Herein, we demonstrate that stromal tumor-associated cells cooperate to favor malignancy of prostate carcinoma (PCa). Indeed, prostate CAFs are active factors of monocyte recruitment toward tumor cells, mainly acting through stromal-derived growth factor-1 delivery and promote their trans-differentiation toward the M2 macrophage phenotype. The relationship between M2 macrophages and CAFs is reciprocal, as M2 macrophages are able to affect mesenchymal–mesenchymal transition of fibroblasts, leading to their enhanced reactivity. On the other side, PCa cells themselves participate in this cross talk through secretion of monocyte chemotactic protein-1, facilitating monocyte recruitment and again macrophage differentiation and M2 polarization. Finally, this complex interplay among cancer cells, CAFs and M2 macrophages, cooperates in increasing tumor cell motility, ultimately fostering cancer cells escaping from primary tumor and metastatic spread, as well as in activation of endothelial cells and their bone marrow-derived precursors to drive
de novo
angiogenesis. In keeping with our data obtained
in vitro
, the analysis of patients affected by prostate cancers at different clinical stages revealed a clear increase in the M2/M1 ratio in correlation with clinical values. These data, coupled with the role of CAFs in carcinoma malignancy to elicit expression of stem-like traits, should focus great interest for innovative strategies aimed at the co-targeting of inflammatory cells and fibroblasts to improve therapeutic efficacy.
Journal Article
LncRNA MIR155HG induces M2 macrophage polarization and drug resistance of colorectal cancer cells by regulating ANXA2
2022
ObjectiveTo investigate the effects of lncRNA MIR155HG and Annexin A2 (ANXA2) on colorectal cancer (CRC) and the mechanism of the MIR155HG/ANXA2 axis.MethodsThe expressions of MIR155HG and ANXA2 in human CRC tissues were analyzed for association with pathological characteristics and prognosis of CRC patients. CRC cell lines (Caco2 and HT29) were used to study the effects of MIR155HG or ANXA2 knockdown on tumor cell behaviors and macrophage polarization as well as the effect of M2 polarization on oxaliplatin resistance of CRC cells. RNA immunoprecipitation, RNA pull-down and dual-luciferase reporter assays were applied to verify the targeting relationships among MIR155HG, miR-650 and ANXA2. Heterotopic xenograft models were established to verify the results of cell experiments.ResultsMIR155HG and ANXA2 were highly expressed in CRC tissues/cells and of prognostic values for CRC patients. Knockdown of MIR155HG or ANXA2 suppressed M2 macrophage polarization, and proliferation, migration, invasion and oxaliplatin resistance of CRC cells. MIR155HG competed with ANXA2 for binding miR-650 and can also directly target ANXA2. Knockdown of MIR155HG or ANXA2 also inhibited M2 macrophage polarization and CRC progression in nude mice.ConclusionThis study highlighted that MIR155HG, by regulating the miR-650/ANXA2 axis, promotes CRC progression and enhances oxaliplatin resistance in CRC cells through M2 macrophage polarization.
Journal Article
IGF-1C hydrogel improves the therapeutic effects of MSCs on colitis in mice through PGE2-mediated M2 macrophage polarization
2020
Background: Mesenchymal stem cell (MSC)-based therapies hold great promise for the treatment of inflammatory bowel disease (IBD). In order to optimize and maximize the therapeutic benefits of MSCs, we investigated whether cotransplantation of a chitosan (CS)-based injectable hydrogel with immobilized IGF-1 C domain peptide (CS-IGF-1C) and human placenta-derived MSCs (hP-MSCs) could ameliorate colitis in mice. Methods: IGF-1C hydrogel was generated by immobilizing IGF-1C to CS hydrogel. Colitis was induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) in mice. We initially applied hP-MSCs and CS-IGF-1C hydrogel for the treatment of colitis by in situ injection, and molecular imaging methods were used for real-time imaging of reactive oxygen species (ROS) and tracking of transplanted hP-MSCs by bioluminescence imaging (BLI). Furthermore, the effects of CS-IGF-1C hydrogel on prostaglandin E2 (PGE2) secretion of hP-MSCs and polarization of M2 macrophages were investigated as well. Results: The CS-IGF-1C hydrogel significantly increased hP-MSC proliferation and promoted the production of PGE2 from hP-MSCs in vitro. Moreover, in vivo studies indicated that the CS-IGF-1C hydrogel promoted hP-MSC survival as visualized by BLI and markedly alleviated mouse colitis, which was possibly mediated by hP-MSC production of PGE2 and interleukin-10 (IL-10) production by polarized M2 macrophages. Conclusions: The CS-IGF-1C hydrogel improved the engraftment of transplanted hP-MSCs, ameliorated inflammatory responses, and further promoted the functional and structural recovery of colitis through PGE2-mediated M2 macrophage polarization. Molecular imaging approaches and therapeutic strategies for hydrogel application provide a versatile platform for exploring the promising therapeutic potential of MSCs in the treatment of IBD.
Journal Article
Long non‐coding RNA MEG3 inhibits M2 macrophage polarization by activating TRAF6 via microRNA‐223 down‐regulation in viral myocarditis
2020
Viral myocarditis (VMC) commonly triggers heart failure, for which no specific treatments are available. This study aims to explore the specific role of long non‐coding RNA (lncRNA) maternally expressed 3 (MEG3) in VMC. A VMC mouse model was induced by Coxsackievirus B3 (CVB3). Then, MEG3 and TNF receptor‐associated factor 6 (TRAF6) were silenced and microRNA‐223 (miR‐223) was over‐expressed in the VMC mice, followed by determination of ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS). Dual‐luciferase reporter assay was introduced to test the interaction among MEG3, TRAF6 and miR‐223. Macrophages were isolated from cardiac tissues and bone marrow, and polarization of M1 or M2 macrophages was induced. Then, the expressions of components of NLRP3 inflammatory body (NLRP3, ASC, Caspase‐1), M1 markers (CD86, iNOS and TNF‐α) and M2 markers (CD206, Arginase‐1 and Fizz‐1) were measured following MEG3 silencing. In the VMC mouse model, MEG3 and TRAF6 levels were obviously increased, while miR‐223 expression was significantly reduced. Down‐regulation of MEG3 resulted in the inhibition of TRAF6 by promoting miR‐223. TRAF6 was negatively correlated with miR‐223, but positively correlated with MEG3 expression. Down‐regulations of MEG3 or TRAF6 or up‐regulation of miR‐223 was observed to increase mouse weight, survival rate, LVEF and LVFS, while inhibiting myocarditis and inflammation via the NF‐κB pathway inactivation in VMC mice. Down‐regulation of MEG3 decreased M1 macrophage polarization and elevated M2 macrophage polarization by up‐regulating miR‐223. Collectively, down‐regulation of MEG3 leads to the inhibition of inflammation and induces M2 macrophage polarization via miR‐223/TRAF6/NF‐κB axis, thus alleviating VMC.
Journal Article
Tumor‐derived exosomal miR‐19b‐3p facilitates M2 macrophage polarization and exosomal LINC00273 secretion to promote lung adenocarcinoma metastasis via Hippo pathway
by
Chen, Baoan
,
Wang, Xuerong
,
Bai, Jinyu
in
A549 Cells
,
Adenocarcinoma of Lung - genetics
,
Adenocarcinoma of Lung - metabolism
2021
Numerous reports have elucidated the important participation of exosomes in the communication between tumor cells and other cancer‐related cells including tumor‐associated macrophages (TAMs) in microenvironment. However, the interchange of exosomes between tumor cells and TAMs in the progression of lung adenocarcinoma (LUAD) remains largely enigmatic. Herein, we discovered that LUAD cells induced the M2 polarization of TAMs and the M2‐polarized macrophages facilitated LUAD cell invasion and migration and tumor metastasis in vivo. In detail, LUAD cells secreted exosomes to transport miR‐19b‐3p into TAMs so that miR‐19b‐3p targeted PTPRD and inhibited the PTPRD‐mediated dephosphorylation of STAT3 in TAMs, leading to STAT3 activation and M2 polarization. Also, the activated STAT3 transcriptionally induced LINC00273 in M2 macrophages and exosomal LINC00273 was transferred into LUAD cells. In LUAD cells, LINC00273 recruited NEDD4 to facilitate LATS2 ubiquitination and degradation, so that the Hippo pathway was inactivated and YAP induced the transcription of RBMX. RBMX bound to miR‐19b‐3p to facilitate the packaging of miR‐19b‐3p into LUAD cell‐derived exosomes. Collectively, our results revealed the mechanism underlying the interactive communication between LUAD cells and TAMs through elucidating the exchange of exosomal miR‐19b‐3p and LINC00273 and proved the prometastatic effect of the interchange between two cells. These discoveries opened a new vision for developing LUAD treatment. LUAD cell‐derived exosomal miR‐19b‐3p induce M2 polarization in THP‐1 cells by targeting PTPRD/STAT3 and STAT3 activated LINC00273 was transmitted by M2 macrophage‐derived exosomes to LUAD cells, activating YAP to induce RBMX‐mediated packaging of miR‐19b‐3p into LUAD cell‐derived exosomes.
Journal Article
IL-25 Induced ROS-Mediated M2 Macrophage Polarization via AMPK-Associated Mitophagy
by
Tsai, Mei-Lan
,
Lin, Yi-Ching
,
Hsu, Ya-Ling
in
Acetylcysteine - pharmacology
,
AMP-Activated Protein Kinases - metabolism
,
Antimycin A - pharmacology
2021
Interleukin (IL)-25 is a cytokine released by airway epithelial cells responding to pathogens. Excessive production of reactive oxygen species (ROS) leads to airway inflammation and remodeling in asthma. Mitochondria are the major source of ROS. After stress, defective mitochondria often undergo selective degradation, known as mitophagy. In this study, we examined the effects of IL-25 on ROS production and mitophagy and investigated the underlying mechanisms. The human monocyte cell line was pretreated with IL-25 at different time points. ROS production was measured by flow cytometry. The involvement of mitochondrial activity in the effects of IL-25 on ROS production and subsequent mitophagy was evaluated by enzyme-linked immunosorbent assay, Western blotting, and confocal microscopy. IL-25 stimulation alone induced ROS production and was suppressed by N-acetylcysteine, vitamin C, antimycin A, and MitoTEMPO. The activity of mitochondrial complex I and complex II/III and the levels of p-AMPK and the mitophagy-related proteins were increased by IL-25 stimulation. The CCL-22 secretion was increased by IL-25 stimulation and suppressed by mitophagy inhibitor treatment and PINK1 knockdown. The Th2-like cytokine IL-25 can induce ROS production, increase mitochondrial respiratory chain complex activity, subsequently activate AMPK, and induce mitophagy to stimulate M2 macrophage polarization in monocytes.
Journal Article
Hypoxic lung cancer cell-derived exosomal miR-21 mediates macrophage M2 polarization and promotes cancer cell proliferation through targeting IRF1
2022
Background
Hypoxia is the hallmark of the tumor microenvironment (TME) and plays a critical role during the progress of tumor development. A variety of microRNAs (miRNAs) transmitted by tumor-derived exosomes were involved in intercellular communication. We aimed to elucidate the precise mechanism by which tumor cell-derived exosomes promote lung cancer development by affecting macrophage polarization under hypoxic conditions.
Methods
CD163 signal in tumor tissue from lung cancer patients was detected by immunohistochemical (IHC). The M2 polarization-related markers were assessed by flow cytometry and western blot. Exosomes were isolated from normoxic and hypoxic lung cancer cell culture and characterized by transmission electron microscope (TEM), dynamic light scattering (DLS), and western blot. RNA sequencing was performed to show the abnormally expressed miRNAs in exosomes from normoxic and hypoxic lung cancer cell culture. In addition, CCK-8 and clone formation assays were used to assess cell proliferation. Dual luciferase reporter assay was used to evaluate the relationship between miR-21 and IRF1. For in vivo experiment, the male nude mice were injected with H1299 cells with exosomes and miR-21 mimic treatment.
Results
Firstly, we found a strong CD163 signal in tumor tissue from lung cancer patients by IHC. Subsequently, we co-cultured lung cancer cell line H1299 with M0 macrophage THP-1 and found that H1299 in a hypoxic environment promoted THP-1 M2 polarization. PKH67 fluorescence staining experiments confirmed that exosomes of H1299 origin were able to enter THP-1 and induced M2 polarization. RNA sequencing of exosomes showed that miR-21 level was significantly higher in the hypoxic culture group compared to the normoxic group. Subsequent cellular assays showed that miR-21 inhibited the expression of IRF1 by targeting it. In addition, the overexpression of IRF1 reversed the role of miR-21 on macrophage M2 polarization. Finally, we have confirmed through animal experiments that either hypoxic environment or high miR-21 level promoted tumor progression.
Conclusions
High miR-21 level in hypoxic environments promoted macrophage M2 polarization and induced lung cancer progression through targeting IRF1.
Journal Article