Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2,700 result(s) for "MATHEMATICS / Graphic Methods."
Sort by:
Graph theoretic methods in multiagent networks
This accessible book provides an introduction to the analysis and design of dynamic multiagent networks. Such networks are of great interest in a wide range of areas in science and engineering, including: mobile sensor networks, distributed robotics such as formation flying and swarming, quantum networks, networked economics, biological synchronization, and social networks. Focusing on graph theoretic methods for the analysis and synthesis of dynamic multiagent networks, the book presents a powerful new formalism and set of tools for networked systems. The book's three sections look at foundations, multiagent networks, and networks as systems. The authors give an overview of important ideas from graph theory, followed by a detailed account of the agreement protocol and its various extensions, including the behavior of the protocol over undirected, directed, switching, and random networks. They cover topics such as formation control, coverage, distributed estimation, social networks, and games over networks. And they explore intriguing aspects of viewing networks as systems, by making these networks amenable to control-theoretic analysis and automatic synthesis, by monitoring their dynamic evolution, and by examining higher-order interaction models in terms of simplicial complexes and their applications. The book will interest graduate students working in systems and control, as well as in computer science and robotics. It will be a standard reference for researchers seeking a self-contained account of system-theoretic aspects of multiagent networks and their wide-ranging applications. This book has been adopted as a textbook at the following universities: University of Stuttgart, GermanyRoyal Institute of Technology, SwedenJohannes Kepler University, AustriaGeorgia Tech, USAUniversity of Washington, USAOhio University, USA
The Traveling Salesman Problem
This book presents the latest findings on one of the most intensely investigated subjects in computational mathematics--the traveling salesman problem. It sounds simple enough: given a set of cities and the cost of travel between each pair of them, the problem challenges you to find the cheapest route by which to visit all the cities and return home to where you began. Though seemingly modest, this exercise has inspired studies by mathematicians, chemists, and physicists. Teachers use it in the classroom. It has practical applications in genetics, telecommunications, and neuroscience. The authors of this book are the same pioneers who for nearly two decades have led the investigation into the traveling salesman problem. They have derived solutions to almost eighty-six thousand cities, yet a general solution to the problem has yet to be discovered. Here they describe the method and computer code they used to solve a broad range of large-scale problems, and along the way they demonstrate the interplay of applied mathematics with increasingly powerful computing platforms. They also give the fascinating history of the problem--how it developed, and why it continues to intrigue us.
Graph edge coloring
\"Written by world authorities on graph theory, this book features many new advances and applications in graph edge coloring, describes how the results are interconnected, and provides historial context throughout. Chapter coverage includes an introduction to coloring preliminaries and lower and upper bounds; the Vizing fan; the Kierstead path; simple graphs and line graphs of multigraphs; the Tashkinov tree; Goldberg's conjecture; extreme graphs; generalized edge coloring; and open problems. It serves as a reference for researchers interested in discrete mathematics, graph theory, operations research, theoretical computer science, and combinatorial optimization, as well as a graduate-level course book for students of mathematics, optimization, and computer science\"--
Hypergraph theory : an introduction
This book presents hypergraph theory and covers traditional elements of the theory as well as original concepts such as entropy of hypergraph, similarities and kernels. It details applications in telecommunications and parallel data structure modeling.
Algebraic Graph Theory
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.
Expander Families and Cayley Graphs
Expander families enjoy a wide range of applications in mathematics and computer science, and their study is a fascinating one in its own right. Expander Families and Cayley Graphs: A Beginner's Guide provides an introduction to the mathematical theory underlying these objects.
Solid Geometry with MATLAB Programming
Solid geometry is defined as the study of the geometry of three-dimensional solid figures in Euclidean space. There are numerous techniques in solid geometry, mainly analytic geometry and methods using vectors, since they use linear equations and matrix algebra. Solid geometry is quite useful in everyday life, for example, to design different signs and symbols such as octagon shape stop signs, to indicate traffic rules, to design different 3D objects like cubicles in gaming zones, innovative lifts, creative 3D interiors, and to design 3D computer graphics. Studying solid geometry helps students to improve visualization and increase logical thinking and creativity since it is applicable everywhere in day-to-day life. It builds up a foundation for advanced levels of mathematical studies. Numerous competitive exams include solid geometry since its foundation is required to study other branches like civil engineering, mechanical engineering, computer science engineering, architecture, etc. This book is designed especially for students of all levels, and can serve as a fundamental resource for advanced level studies not only in mathematics but also in various fields like engineering, interior design, architecture, etc. It includes theoretical aspects as well as numerous solved examples. The book includes numerical problems and problems of construction as well as practical problems as an application of the respective topic. A special feature of this book is that it includes solved examples using the mathematical tool MATLAB.
Chromatic polynomials and chromaticity of graphs
This is the first book to comprehensively cover chromatic polynomials of graphs. It includes most of the known results and unsolved problems in the area of chromatic polynomials. Dividing the book into three main parts, the authors take readers from the rudiments of chromatic polynomials to more complex topics: the chromatic equivalence classes of graphs and the zeros and inequalities of chromatic polynomials. The early material is well suited to a graduate level course while the latter parts will be an invaluable resource for postgraduate students and researchers in combinatorics and graph theory.
Visualizing Music
To feel the emotional force of music, we experience it aurally. But how can we convey musical understanding visually? Visualizing Music explores the art of communicating about music through images. Drawing on principles from the fields of vision science and information visualization, Eric Isaacson describes how graphical images can help us understand music. By explaining the history of music visualizations through the lens of human perception and cognition, Isaacson offers a guide to understanding what makes musical images effective or ineffective and provides readers with extensive principles and strategies to create excellent images of their own. Illustrated with over 300 diagrams from both historical and modern sources, including examples and theories from Western art music, world music, and jazz, folk, and popular music, Visualizing Music explores the decisions made around image creation. Together with an extensive online supplement and dozens of redrawings that show the impact of effective techniques, Visualizing Music is a captivating guide to thinking differently about design that will help music scholars better understand the power of musical images, thereby shifting the ephemeral to material.