Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
436 result(s) for "MATURITY DATE"
Sort by:
Estimation of the Maturity Date of Soybean Breeding Lines Using UAV-Based Multispectral Imagery
Physiological maturity date is a critical parameter for the selection of breeding lines in soybean breeding programs. The conventional method to estimate the maturity dates of breeding lines uses visual ratings based on pod senescence by experts, which is subjective by human estimation, labor-intensive and time-consuming. Unmanned aerial vehicle (UAV)-based phenotyping systems provide a high-throughput and powerful tool of capturing crop traits using remote sensing, image processing and machine learning technologies. The goal of this study was to investigate the potential of predicting maturity dates of soybean breeding lines using UAV-based multispectral imagery. Maturity dates of 326 soybean breeding lines were taken using visual ratings from the beginning maturity stage (R7) to full maturity stage (R8), and the aerial multispectral images were taken during this period on 27 August, 14 September and 27 September, 2018. One hundred and thirty features were extracted from the five-band multispectral images. The maturity dates of the soybean lines were predicted and evaluated using partial least square regression (PLSR) models with 10-fold cross-validation. Twenty image features with importance to the estimation were selected and their changing rates between each two of the data collection days were calculated. The best prediction (R2 = 0.81, RMSE = 1.4 days) was made by the PLSR model using image features taken on 14 September and their changing rates between 14 September and 27 September with five components, leading to the conclusion that the UAV-based multispectral imagery is promising and practical in estimating maturity dates of soybean breeding lines.
Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry
The present study investigates the genetic determinism of flowering and maturity dates, two traits highly affected by global climate change. Flowering and maturity dates were evaluated on five progenies from three Prunus species, peach, apricot and sweet cherry, during 3-8 years. Quantitative trait locus (QTL) detection was performed separately for each year and also by integrating data from all years together. High heritability estimates were obtained for flowering and maturity dates. Several QTLs for flowering and maturity dates were highly stable, detected each year of evaluation, suggesting that they were not affected by climatic variations. For flowering date, major QTLs were detected on linkage groups (LG) 4 for apricot and sweet cherry and on LG6 for peach. QTLs were identified on LG2, LG3, LG4 and LG7 for the three species. For maturity date, a major QTL was detected on LG4 in the three species. Using the peach genome sequence data, candidate genes underlying the major QTLs on LG4 and LG6 were investigated and key genes were identified. Our results provide a basis for the identification of genes involved in flowering and maturity dates that could be used to develop cultivar ideotypes adapted to future climatic conditions.
Autosuppression of MdNAC18.1 endowed by a 61‐bp promoter fragment duplication delays maturity date in apple
Summary Maturity date considerably influences fruit marketing period and commercial value and it is of particular importance in apple due to its association with fruit firmness that determines storage and shelf life, but the underlying mechanism remains unclear. In this study, we report a 61‐bp fragment duplication in the MdNAC18.1 promoter that underpins maturity date variation in apple. MdNAC18.1 is the crucial major gene for maturity date and was found to regulate fruit ripening by activating transcription of ethylene biosynthetic genes and ripening‐related transcription factors, including the MdNAC18.1 homologue MdNAC72 and the main regulator of JA signalling MdMYC2. Interestingly, MdNAC18.1 was capable of binding to the promoter itself containing an additional NAC recognition site that arose from the 61‐bp duplication to repress its own expression, but could not bind to its own promoter without the 61‐bp duplication. Thus, the MdNAC18.1 allele with autosuppression function produces a phenotype of delayed maturity date and slower softening of fruit compared to that without autoregulation function. Our results demonstrate an autosuppression module that regulates the overall tempo of fruit ripening through fine‐tuning ethylene biosynthesis.
Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach
Background Maturity date (MD) is a crucial factor for marketing of fresh fruit, especially those with limited shelf-life such as peach ( Prunus persica L. Batsch): selection of several cultivars with differing MD would be advantageous to cover and extend the marketing season. Aims of this work were the fine mapping and identification of candidate genes for the major maturity date locus previously identified on peach linkage group 4. To improve genetic resolution of the target locus two F 2 populations derived from the crosses Contender x Ambra (CxA, 306 individuals) and PI91459 (NJ Weeping) x Bounty (WxBy, 103 individuals) were genotyped with the Sequenom and 9K Illumina Peach Chip SNP platforms, respectively. Results Recombinant individuals from the WxBy F 2 population allowed the localisation of maturity date locus to a 220 kb region of the peach genome. Among the 25 annotated genes within this interval, functional classification identified ppa007577m and ppa008301m as the most likely candidates, both encoding transcription factors of the NAC ( N AM/ A TAF1, 2/ C UC2) family. Re-sequencing of the four parents and comparison with the reference genome sequence uncovered a deletion of 232 bp in the upstream region of ppa007577m that is homozygous in NJ Weeping and heterozygous in Ambra, Bounty and the WxBy F 1 parent. However, this variation did not segregate in the CxA F 2 population being the CxA F 1 parent homozygous for the reference allele. The second gene was thus examined as a candidate for maturity date. Re-sequencing of ppa008301m, showed an in-frame insertion of 9 bp in the last exon that co-segregated with the maturity date locus in both CxA and WxBy F 2 populations. Conclusions Using two different segregating populations, the map position of the maturity date locus was refined from 3.56 Mb to 220 kb. A sequence variant in the NAC gene ppa008301m was shown to co-segregate with the maturity date locus, suggesting this gene as a candidate controlling ripening time in peach. If confirmed on other genetic materials, this variant may be used for marker-assisted breeding of new cultivars with differing maturity date.
Prediction of Winter Wheat Maturity Dates through Assimilating Remotely Sensed Leaf Area Index into Crop Growth Model
Predicting crop maturity dates is important for improving crop harvest planning and grain quality. The prediction of crop maturity dates by assimilating remote sensing information into crop growth model has not been fully explored. In this study, a data assimilation framework incorporating the leaf area index (LAI) product from Moderate Resolution Imaging Spectroradiometer (MODIS) into a World Food Studies (WOFOST) model was proposed to predict the maturity dates of winter wheat in Henan province, China. Minimization of normalized cost function was used to obtain the input parameters of the WOFOST model. The WOFOST model was run with the re-initialized parameter to forecast the maturity dates of winter wheat grid by grid, and THORPEX Interactive Grand Global Ensemble (TIGGE) was used as forecasting period weather input in the future 15 days (d) for the WOFOST model. The results demonstrated a promising regional maturity date prediction with determination coefficient (R2) of 0.94 and the root mean square error (RMSE) of 1.86 d. The outcomes also showed that the optimal forecasting starting time for Henan was 30 April, corresponding to a stage from anthesis to grain filling. Our study indicated great potential of using data assimilation approaches in winter wheat maturity date prediction.
The Debt Repayment on a Murabaha Financing Debt before Maturity Date: A Regulatory Approach and Its Compliance
This study explores how murabaha financing is applied in Islamic financial institutions after the release of DSN-MUI Fatwa No. 153/2022 and the 2023 OJK Murabaha Financing Guidelines. These new rules aim to ensure stronger Sharia compliance by providing clear procedures for early debt settlement, margin discounts, and repayment arrangements. With a more transparent and standardized framework, the regulations are expected to reduce disputes, improve efficiency, and bring greater consistency across institutions. Using a qualitative approach, this research reviews regulatory documents, institutional Standard Operating Procedures (SOPs), and actual practices in selected Islamic banks and financing companies. The findings show that the updated guidelines encourage institutions to adjust their SOPs to align with both Sharia principles and operational best practices. Standardizing settlement and discount methods improves transparency, removes uncertainties, and builds customer trust. The results also highlight how clear regulations can support financial stability in the Islamic banking sector by ensuring murabaha transactions are fair, predictable, and fully compliant with Sharia. Overall, this study offers practical insights for policymakers, Sharia boards, and practitioners on how regulatory clarity can strengthen both operational performance and religious adherence in Islamic finance.
Genetic dissection of fruit maturity date in apricot (P. armeniaca L.) through a Single Primer Enrichment Technology (SPET) approach
Background Single primer enrichment technology (SPET) is an emerging and increasingly popular solution for high-throughput targeted genotyping in plants. Although SPET requires a priori identification of polymorphisms for probe design, this technology has potentially higher reproducibility and transferability compared to other reduced representation sequencing (RRS) approaches, also enabling the discovery of closely linked polymorphisms surrounding the target one. Results The potential for SPET application in fruit trees was evaluated by developing a 25K target SNPs assay to genotype a panel of apricot accessions and progenies. A total of 32,492 polymorphic sites were genotyped in 128 accessions (including 8,188 accessory non-target SNPs) with extremely low levels of missing data and a significant correlation of allelic frequencies compared to whole-genome sequencing data used for array design. Assay performance was further validated by estimating genotyping errors in two biparental progenies, resulting in an overall 1.8% rate. SPET genotyping data were used to infer population structure and to dissect the architecture of fruit maturity date (MD), a quantitative reproductive phenological trait of great agronomical interest in apricot species. Depending on the year, GWAS revealed loci associated to MD on several chromosomes. The QTLs on chromosomes 1 and 4 (the latter explaining most of the phenotypic variability in the panel) were the most consistent over years and were further confirmed by linkage mapping in two segregating progenies. Conclusions Besides the utility for marker assisted selection and for paving the way to in-depth studies to clarify the molecular bases of MD trait variation in apricot, the results provide an overview of the performance and reliability of SPET for fruit tree genetics.
Methodology to estimate rice genetic coefficients for the CSM-CERES-Rice model using GENCALC and GLUE genetic coefficient estimators
Prior to applying the cropping system model-CERES-Rice model to deep water rice (DWR), it is important to estimate the rice genetic coefficients (GC). The goal of the current study was to compare two methods for estimating GC using a GC calculator (GENCALC) and generalized likelihood uncertainty estimation (GLUE) for three flooded rice (FDR) varieties. Data from a field experiment on the effect of planting date and variety on FDR production was conducted in 2009 on a DWR area in Bang Taen His Majesty's Private Development Project, Prachin Buri, Thailand. The experimental design was split-plot with four main plots (planting dates) and three sub-plots (FDR varieties) with four replications. The simulated values for anthesis date, maturity date and grain weight using GENCALC produced normalized root mean square errors (RMSEn) of 3.97, 3.69 and 3.68, while using GLUE produced RMSEn of 3.67, 2.50 and 3.68, respectively. The simulated grain number and grain yield under GENCALC GC were not significantly different from the observed values but were higher than simulated values for GLUE GC. Simulated values of above-ground biomass for both GENCALC (11 727 kg/ha) and GLUE GC (11 544 kg/ha) were overestimated compared to observed values (8512 kg/ha). In addition, good agreements of leaf N values were found with D-index values of 0.94 and 0.96 using GENACALC and GLUE GC simulations, respectively. Therefore, the GENCALC and GLUE GC estimators of DSSAT can both be used for estimating GC of FDR in the DWR area in Thailand and similar agro-ecosystems in Southeast Asia.
Simulation of Climate Change Impacts on Phenology and Production of Winter Wheat in Northwestern China Using CERES-Wheat Model
Wheat plays a very important role in China’s agriculture. The wheat grain yields are affected by the growing period that is determined by temperature, precipitation, and field management, such as planting date and cultivar species. Here, we used the CSM-CERES-Wheat model along with different Representative Concentration Pathways (RCPs) and two global circulation models (GCMs) to simulate different impacts on the winter wheat that caused by changing climate for 2025 and 2050 projections for Guanzhong Plain in Northwest China. Our results showed that it is obvious that there is a warming trend in Guanzhong Plain; the mean temperature for the different scenarios increased up to 3.8 °C. Furthermore, the precipitation varied in the year; in general, the rainfall in February and August was increased, while it decreased in April, October and November. However, the solar radiation was found to be greatly reduced in the Guanzhong Plain. Compared to the reference year, the results showed that the number of days to maturity was shortened 3–24 days, and the main reason was the increased temperature during the winter wheat growing period. Moreover, five planting dates (from October 7 to 27 with five days per step) were applied to simulate the final yield and to select an appropriate planting date for the study area. The yield changed smallest based on Geophysical Fluid Dynamics Laboratory (GFDL)-CM3 (−6.5, −5.3, −4.2 based on RCP 4.5, RCP 6.0, and RCP 8.5) for 2025 when planting on October 27. Farmers might have to plant the crop before 27 October.
Mapping of a major gene for the slow ripening character in peach: co-location with the maturity date gene and development of a candidate gene-based diagnostic marker for its selection
Progeny of certain peach crosses include plants with slow ripening (SR) fruits that do not mature and remain on the tree after leaf fall. This character is determined by a single gene (Sr/sr) that segregated in the F₁ population of the cross between ‘Belbinette’ and ‘Nectalady’ (Bb × Nl). Heterozygous (Srsr) in both parents, the recessive srsr homozygote resulted in SR individuals. This gene mapped to linkage group 4 in a map constructed with SSRs in BbxNl, at the same genomic region previously found to contain a gene for maturity date (MD). An allele of a SCAR marker (PSR2) developed from the candidate gene for MD (ppa008301m), and with high sequence similarity to NAC transcription factors, was diagnostic for the sr allele in the Bb × Nl progeny, a collection of 135 normally-ripening cultivars and breeding lines, and 467 offspring of different lines segregating for this character. We developed an SSR marker, CPP15636, at this location (39 kb from PSR2), which had one allele associated with the character although a few recombinant individuals were identified. Both PSR2 and CPP15636 can be used for early identification and selection of normally-ripening genotypes in breeding programs. Data of MD in the population studied indicates that sr could be an allele of the MD gene. Given that the MD locus is partly responsible for the variability of the maturity date, we suggest that the sr allele in heterozygosis could confer desirable properties of postharvest behavior or specific maturity dates and would be preferentially selected in peach breeding.