Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
637
result(s) for
"MCP-1"
Sort by:
Tumor-associated stromal cells as key contributors to the tumor microenvironment
by
Marini, Frank C.
,
Mutkus, Lysette
,
Bussard, Karen M.
in
Adipocytes - pathology
,
Analysis
,
Biomarkers
2016
The tumor microenvironment is a heterogeneous population of cells consisting of the tumor bulk plus supporting cells. It is becoming increasingly evident that these supporting cells are recruited by cancer cells from nearby endogenous host stroma and promote events such as tumor angiogenesis, proliferation, invasion, and metastasis, as well as mediate mechanisms of therapeutic resistance. In addition, recruited stromal cells range in type and include vascular endothelial cells, pericytes, adipocytes, fibroblasts, and bone-marrow mesenchymal stromal cells. During normal wound healing and inflammatory processes, local stromal cells change their phenotype to become that of reactive stroma. Under certain conditions, however, tumor cells can co-opt these reactive stromal cells and further transition them into tumor-associated stromal cells (TASCs). These TASCs express higher levels of proteins, including alpha-smooth muscle actin, fibroblast activating protein, and matrix metalloproteinases, compared with their normal, non-reactive counterparts. TASCs are also known to secrete many pro-tumorigenic factors, including IL-6, IL-8, stromal-derived factor-1 alpha, vascular endothelial growth factor, tenascin-C, and matrix metalloproteinases, among others, which recruit additional tumor and pro-tumorigenic cells to the developing microenvironment. Here, we review the current literature pertaining to the origins of recruited host stroma, contributions toward tumor progression, tumor-associated stromal cells, and mechanisms of crosstalk between endogenous host stroma and tumor cells.
Journal Article
Peripheral Inflammatory Markers TNF-α and CCL2 Revisited: Association with Parkinson’s Disease Severity
by
Lampropoulos, Ioannis C.
,
Papoutsopoulou, Stamatia
,
Xiromerisiou, Georgia
in
Chemokine CCL2
,
Chemokines
,
Cytokines
2022
One of the major mediators of neuroinflammation in PD is tumour necrosis factor alpha (TNF-α), which, similar to other cytokines, is produced by activated microglia and astrocytes. Although TNF-α can be neuroprotective in the brain, long-term neuroinflammation and TNF release can be harmful, having a neurotoxic role that leads to death of oligodendrocytes, astrocytes, and neurons and, therefore, is associated with neurodegeneration. Apart from cytokines, a wide family of molecules with homologous structures, namely chemokines, play a key role in neuro-inflammation by drawing cytotoxic T-lymphocytes and activating microglia. The objective of the current study was to examine the levels of the serum TNF-α and CCL2 (Chemokine (C-C motif) ligand 2), also known as MCP-1 (Monocyte Chemoattractant Protein-1), in PD patients compared with healthy controls. We also investigated the associations between the serum levels of these two inflammatory mediators and a number of clinical symptoms, in particular, disease severity and cognition. Such an assessment may point to their prognostic value and provide some treatment hints. PD patients with advanced stage on the Hoehn–Yahr scale showed an increase in TNF-α levels compared with PD patients with stages 1 and 2 (p = 0.01). Additionally, the UPDRS score was significantly associated with TNF-α levels. CCL2 levels, however, showed no significant associations.
Journal Article
Glial activation and inflammation along the Alzheimer’s disease continuum
by
Henjum, Kristi
,
Grøntvedt, Gøril Rolfseng
,
Nilsson, Lars N. G.
in
Adenosine
,
Aging
,
Alzheimer's disease
2019
Background
Neuronal and glial cell interaction is essential for synaptic homeostasis and may be affected in Alzheimer’s disease (AD). We measured cerebrospinal fluid (CSF) neuronal and glia markers along the AD continuum, to reveal putative protective or harmful stage-dependent patterns of activation.
Methods
We included healthy controls (
n
= 36) and Aβ-positive (Aβ+) cases (as defined by pathological CSF amyloid beta 1-42 (Aβ42)) with either subjective cognitive decline (SCD,
n
= 19), mild cognitive impairment (MCI,
n
= 39), or AD dementia (
n
= 27). The following CSF markers were measured: a microglial activation marker—soluble triggering receptor expressed on myeloid cells 2 (sTREM2), a marker of microglial inflammatory reaction—monocyte chemoattractant protein-1 (MCP-1), two astroglial activation markers—chitinase-3-like protein 1 (YKL-40) and clusterin, a neuron-microglia communication marker—fractalkine, and the CSF AD biomarkers (Aβ42, phosphorylated tau (P-tau), total tau (T-tau)). Using ANOVA with planned comparisons, or Kruskal-Wallis tests with Dunn’s pairwise comparisons, CSF levels were compared between clinical groups and between stages of biomarker severity using CSF biomarkers for classification based on amyloid pathology (A), tau pathology (T), and neurodegeneration (N) giving rise to the A/T/N score.
Results
Compared to healthy controls, sTREM2 was increased in SCD (
p
< .01), MCI (
p
< .05), and AD dementia cases (
p
< .001) and increased in AD dementia compared to MCI cases (
p
< .05). MCP-1 was increased in MCI (
p
< .05) and AD dementia compared to both healthy controls (
p
< .001) and SCD cases (
p
< .01). YKL-40 was increased in dementia compared to healthy controls (
p
< .01) and MCI (
p
< .05). All of the CSF activation markers were increased in subjects with pathological CSF T-tau (A+T−N+ and A+T+N+), compared to subjects without neurodegeneration (A−T−N− and A+T−N−).
Discussion
Microglial activation as indicated by increased sTREM2 is present already at the preclinical SCD stage; increased MCP-1 and astroglial activation markers (YKL-40 and clusterin) were noted only at the MCI and AD dementia stages, respectively, and in Aβ+ cases (A+) with pathological T-tau (N+). Possible different effects of early and later glial activation need to be explored.
Journal Article
ROS/TNF-α Crosstalk Triggers the Expression of IL-8 and MCP-1 in Human Monocytic THP-1 Cells via the NF-κB and ERK1/2 Mediated Signaling
by
Al-Roub, Areej
,
Al-Madhoun, Ashraf
,
Arefanian, Hossein
in
Body mass index
,
Chemokines
,
Cytokines
2021
IL-8/MCP-1 act as neutrophil/monocyte chemoattractants, respectively. Oxidative stress emerges as a key player in the pathophysiology of obesity. However, it remains unclear whether the TNF-α/oxidative stress interplay can trigger IL-8/MCP-1 expression and, if so, by which mechanism(s). IL-8/MCP-1 adipose expression was detected in lean, overweight, and obese individuals, 15 each, using immunohistochemistry. To detect the role of reactive oxygen species (ROS)/TNF-α synergy as a chemokine driver, THP-1 cells were stimulated with TNF-α, with/without H2O2 or hypoxia. Target gene expression was measured by qRT-PCR, proteins by flow cytometry/confocal microscopy, ROS by DCFH-DA assay, and signaling pathways by immunoblotting. IL-8/MCP-1 adipose expression was significantly higher in obese/overweight. Furthermore, IL-8/MCP-1 mRNA/protein was amplified in monocytic cells following stimulation with TNF-α in the presence of H2O2 or hypoxia (p ˂ 0.0001). Synergistic chemokine upregulation was related to the ROS levels, while pre-treatments with NAC suppressed this chemokine elevation (p ≤ 0.01). The ROS/TNF-α crosstalk involved upregulation of CHOP, ERN1, HIF1A, and NF-κB/ERK-1,2 mediated signaling. In conclusion, IL-8/MCP-1 adipose expression is elevated in obesity. Mechanistically, ROS/TNF-α crosstalk may drive expression of these chemokines in monocytic cells by inducing ER stress, HIF1A stabilization, and signaling via NF-κB/ERK-1,2. NAC had inhibitory effect on oxidative stress-driven IL-8/MCP-1 expression, which may have therapeutic significance regarding meta-inflammation.
Journal Article
IP-10 and MCP-1 as biomarkers associated with disease severity of COVID-19
by
Xu, Yingchun
,
Zhang, Dong
,
Xie, Jing
in
Adaptor Proteins, Signal Transducing - blood
,
Aged
,
Betacoronavirus - pathogenicity
2020
Background
COVID-19 is a viral respiratory disease caused by the severe acute respiratory syndrome-Coronavirus type 2 (SARS-CoV-2). Patients with this disease may be more prone to venous or arterial thrombosis because of the activation of many factors involved in it, including inflammation, platelet activation and endothelial dysfunction. Interferon gamma inducible protein-10 (IP-10), monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein 1-alpha (MIP1α) are cytokines related to thrombosis. Therefore, this study focused on these three indicators in COVID-19, with the hope to find biomarkers that are associated with patients’ outcome.
Methods
This is a retrospective single-center study involving 74 severe and critically ill COVID-19 patients recruited from the ICU department of the Tongji Hospital in Wuhan, China. The patients were divided into two groups: severe patients and critically ill patients. The serum IP-10, MCP-1 and MIP1α level in both groups was detected using the enzyme-linked immunosorbent assay (ELISA) kit. The clinical symptoms, laboratory test results, and the outcome of COVID-19 patients were retrospectively analyzed.
Results
The serum IP-10 and MCP-1 level in critically ill patients was significantly higher than that in severe patients (
P
< 0.001). However, no statistical difference in MIP1α between the two groups was found. The analysis of dynamic changes showed that these indicators remarkably increased in patients with poor prognosis. Since the selected patients were severe or critically ill, no significant difference was observed between survival and death.
Conclusions
IP-10 and MCP-1 are biomarkers associated with the severity of COVID-19 disease and can be related to the risk of death in COVID-19 patients.
Journal Article
Role of MCP-1 as an inflammatory biomarker in nephropathy
2024
The Monocyte chemoattractant protein-1 (MCP-1), also referred to as chemokine ligand 2 (CCL2), belongs to the extensive chemokine family and serves as a crucial mediator of innate immunity and tissue inflammation. It has a notable impact on inflammatory conditions affecting the kidneys. Upon binding to its receptor, MCP-1 can induce lymphocytes and NK cells’ homing, migration, activation, differentiation, and development while promoting monocytes’ and macrophages’ infiltration, thereby facilitating kidney disease-related inflammation. As a biomarker for kidney disease, MCP-1 has made notable advancements in primary kidney diseases such as crescentic glomerulonephritis, chronic glomerulonephritis, primary glomerulopathy, idiopathic proteinuria glomerulopathy, acute kidney injury; secondary kidney diseases like diabetic nephropathy and lupus nephritis; hereditary kidney diseases including autosomal dominant polycystic kidney disease and sickle cell kidney disease. MCP-1 not only predicts the occurrence, progression, prognosis of the disease but is also closely associated with the severity and stage of nephropathy. When renal tissue is stimulated or experiences significant damage, the expression of MCP-1 increases, demonstrating a direct correlation with the severity of renal injury.
Journal Article
Recruited Alveolar Macrophages, in Response to Airway Epithelial–Derived Monocyte Chemoattractant Protein 1/CCL2, Regulate Airway Inflammation and Remodeling in Allergic Asthma
by
Lee, Yong Gyu
,
Deng, Jing
,
Kelly, Elizabeth A. B.
in
Airway management
,
Airway Remodeling - immunology
,
Animals
2015
Although alveolar macrophages (AMs) from patients with asthma are known to be functionally different from those of healthy individuals, the mechanism by which this transformation occurs has not been fully elucidated in asthma. The goal of this study was to define the mechanisms that control AM phenotypic and functional transformation in response to acute allergic airway inflammation. The phenotype and functional characteristics of AMs obtained from human subjects with asthma after subsegmental bronchoprovocation with allergen was studied. Using macrophage-depleted mice, the role and trafficking of AM populations was determined using an acute allergic lung inflammation model. We observed that depletion of AMs in a mouse allergic asthma model attenuates Th2-type allergic lung inflammation and its consequent airway remodeling. In both human and mouse, endobronchial challenge with allergen induced a marked increase in monocyte chemotactic proteins (MCPs) in bronchoalveolar fluid, concomitant with the rapid appearance of a monocyte-derived population of AMs. Furthermore, airway allergen challenge of allergic subjects with mild asthma skewed the pattern of AM gene expression toward high levels of the receptor for MCP1 (CCR2/MCP1R) and expression of M2 phenotypic proteins, whereas most proinflammatory genes were highly suppressed. CCL2/MCP-1 gene expression was prominent in bronchial epithelial cells in a mouse allergic asthma model, and in vitro studies indicate that bronchial epithelial cells produced abundant MCP-1 in response to house dust mite allergen. Thus, our study indicates that bronchial allergen challenge induces the recruitment of blood monocytes along a chemotactic gradient generated by allergen-exposed bronchial epithelial cells.
Journal Article
A positive feedback loop between RIP3 and JNK controls non‐alcoholic steatohepatitis
by
Schneider, Anne Theres
,
Roderburg, Christoph
,
Koppe, Christiane
in
Animals
,
biliary ductular reaction
,
Caspase‐8
2014
Non‐alcoholic fatty liver disease (NAFLD) represents the most common liver disease in Western countries and often progresses to non‐alcoholic steatohepatitis (NASH) leading ultimately to liver fibrosis and liver cancer. The occurrence of hepatocyte cell death—so far characterized as hepatocyte apoptosis—represents a fundamental step from benign steatosis toward progressive steatohepatitis. In contrast, the function of RIP3‐dependent “necroptosis” in NASH and NASH‐induced fibrosis is currently unknown. We show that RIP3 is upregulated in human NASH and in a dietary mouse model of steatohepatitis. RIP3 mediates liver injury, inflammation, induction of hepatic progenitor cells/activated cholangiocytes, and liver fibrosis through a pathway suppressed by Caspase‐8. This function of RIP3 is mediated by a positive feedback loop involving activation of Jun‐(N)‐terminal Kinase (JNK). Furthermore, RIP3‐dependent JNK activation promotes the release of pro‐inflammatory mediators like MCP‐1, thereby attracting macrophages to the injured liver and further augmenting RIP3‐dependent signaling, cell death, and liver fibrosis. Thus, RIP3‐dependent necroptosis controls NASH‐induced liver fibrosis. This pathway might represent a novel and specific target for pharmacological strategies in patients with NASH.
Synopsis
RIP3‐dependent necroptosis mediates NASH‐induced liver fibrosis via activation of JNK, MCP‐1‐mediated recruitment of monocytes, and an expansion of intrahepatic biliary/progenitor cells. Caspase‐8 appears to suppress the deleterious effect of RIP3.
RIP3 mediates liver injury in MCD‐diet‐induced NASH.
RIP3—similar to Caspase‐8—does not affect CCl4‐induced liver fibrosis and thus might be a specific target in metabolic liver disease.
Human NASH livers strongly express RIP3.
Targeting RIP3 might represent a novel‐specific approach in human NASH.
Graphical Abstract
RIP3‐dependent necroptosis mediates NASH‐induced liver fibrosis via activation of JNK, MCP‐1‐mediated recruitment of monocytes, and an expansion of intrahepatic biliary/progenitor cells. Caspase‐8 appears to suppress the deleterious effect of RIP3.
Journal Article
Monocyte Chemoattractant Protein-1 promotes cancer cell migration via c-Raf/MAPK/AP-1 pathway and MMP-9 production in osteosarcoma
2020
Background
Osteosarcoma is generally reported among younger individuals and has a very poor prognosis, particularly for the development of metastasis. However, more effective metastatic biomarkers and therapeutic methods are absent. Monocyte chemoattractant protein-1 (MCP-1) is involved in cancer progression and inflammatory recruitment. Although previous studies have reported higher serum MCP-1 levels in patients with osteosarcoma, the role of MCP-1 in osteosarcoma progression remains to be addressed.
Methods
The osteosarcoma cell migratory ability was assessed by transwell migration assay. The MCP-1 and MMP-9 expression levels were analyzed by Western blot and qPCR. The signal activation was conducted by Western blot. The in vivo mouse experiment and tumor tissue array were performed to confirm our findings in vitro.
Results
The present study demonstrates that MCP-1 regulates cell mobility through matrix metalloproteinase (MMP)-9 expression in osteosarcoma cells. Moreover, MCP-1 promotes MMP-9 expression, cell migration, and cell invasion by mediating CCR2, c-Raf, MAPK, and AP-1 signal transduction. Using MCP-1 knockdown stable cell lines, we found that MCP-1 knockdown reduces MMP-9 expression and cell mobility. Finally, we found high MCP-1 expression levels in osteosarcoma specimens.
Conclusions
Our results provide prognostic value of MCP-1 in osteosarcoma by promoting MMP-9 expression.
Journal Article
Resveratrol treatment reduces expression of MCP‐1, IL‐6, IL‐8 and RANTES in endometriotic stromal cells
by
Shidfar, Farzad
,
Heidari, Sahel
,
Delbandi, Ali‐Akbar
in
Antibiotics
,
Cell activation
,
Disease
2021
Endometriosis is an inflammatory disease affecting reproductive‐aged women. Immunologic disturbance, as well as inflammation, have crucial roles in the pathogenesis of endometriosis. In this study, we evaluated the effects of resveratrol treatment on expression of monocyte chemotactic protein‐1 (MCP‐1), interleukin‐6 (IL‐6), IL‐8, and regulated upon activation, normal T cell expressed and secreted (RANTES) in endometrial stromal cells from patients with endometriosis compared with non‐endometriotic controls. Thirteen eutopic (EuESCs) and nine ectopic (EESCs) endometrial stromal cells from endometriotic patients as well as eleven endometrial stromal cells from non‐endometriotic controls (CESCs) were treated with resveratrol (100 μmol/L) or ethanol, and gene and/or protein expression of MCP‐1, IL‐6, IL‐8 and RANTES was examined at 6, 24 and 48 hours following treatment in the cells from all origins. Resveratrol treatment significantly reduced gene and protein expression of MCP‐1, IL‐6, and IL‐8 in EuESCs and EESCs compared with CESCs (P < .05‐.001, P < .05‐.001 and P < .05‐<.01, respectively), and this reduction was more noticeable in EESCs than EuESCs (P < .05‐<.001). Besides, resveratrol treatment significantly reduced RANTES protein expression in EESCs in all time intervals (P < .05). Resveratrol treatment significantly reduced the expression of MCP‐1, IL‐6, IL‐8 and RANTES in EESCs.
Journal Article