Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
9
result(s) for
"MEMLS"
Sort by:
Snow Wetness Retrieved from L-Band Radiometry
2018
The present study demonstrates the successful use of the high sensitivity of L-band brightness temperatures to snow liquid water in the retrieval of snow liquid water from multi-angular L-band brightness temperatures. The emission model employed was developed from parts of the “microwave emission model of layered snowpacks” (MEMLS), coupled with components adopted from the “L-band microwave emission of the biosphere” (L-MEB) model. Two types of snow liquid water retrievals were performed based on L-band brightness temperatures measured over (i) areas with a metal reflector placed on the ground (“reflector area”— T B , R ), and (ii) natural snow-covered ground (“natural area”— T B , N ). The reliable representation of temporal variations of snow liquid water is demonstrated for both types of the aforementioned quasi-simultaneous retrievals. This is verified by the fact that both types of snow liquid water retrievals indicate a dry snowpack throughout the “cold winter period” with frozen ground and air temperatures well below freezing, and synchronously respond to snowpack moisture variations during the “early spring period”. The robust and reliable performance of snow liquid water retrieved from T B , R , together with their level of detail, suggest the use of these retrievals as “references” to assess the meaningfulness of the snow liquid water retrievals based on T B , N . It is noteworthy that the latter retrievals are achieved in a two-step retrieval procedure using exclusively L-band brightness temperatures, without the need for in-situ measurements, such as ground permittivity ε G and snow mass-density ρ S . The latter two are estimated in the first retrieval-step employing the well-established two-parameter ( ρ S , ε G ) retrieval scheme designed for dry snow conditions and explored in the companion paper that is included in this special issue in terms of its sensitivity with respect to disturbative melting effects. The two-step retrieval approach proposed and investigated here, opens up the possibility of using airborne or spaceborne L-band radiometry to estimate ( ρ S , ε G ) and additionally snow liquid water as a new passive L-band data product.
Journal Article
Snow Density and Ground Permittivity Retrieved from L-Band Radiometry: Melting Effects
2018
Ground permittivity and snow density retrievals for the “snow-free period”, “cold winter period”, and “early spring period” are performed using the experimental L-band radiometry data from the winter 2016/2017 campaign at the Davos-Laret Remote Sensing Field Laboratory. The performance of the single-angle and multi-angle two-parameter retrieval algorithms employed during each of the aforementioned three periods is assessed using in-situ measured ground permittivity and snow density. Additionally, a synthetic sensitivity analysis is conducted that studies melting effects on the retrievals in the form of two types of “geophysical noise” (snow liquid water and footprint-dependent ground permittivity). Experimental and synthetic analyses show that both types of investigated “geophysical noise” noticeably disturb the retrievals and result in an increased correlation between them. The strength of this correlation is successfully used as a quality-indicator flag for the purpose of filtering out highly correlated ground permittivity and snow density retrievals. It is demonstrated that this filtering significantly improves the accuracy of both ground permittivity and snow density retrievals compared to corresponding reference in-situ data. Experimental and synthetic retrievals are performed in retrieval modes RM = “H”, “V”, and “HV”, where brightness temperatures from polarizations p = H, p = V, or both p = H and V are used, respectively, in the retrieval procedure. Our analysis shows that retrievals for RM = “V” are predominantly least prone to the investigated “geophysical noise”. The presented experimental results indicate that retrievals match in-situ observations best for the “snow-free period” and the “cold winter period” when “geophysical noise” is at minimum.
Journal Article
Davos-Laret Remote Sensing Field Laboratory: 2016/2017 Winter Season L-Band Measurements Data-Processing and Analysis
by
Naderpour, Reza
,
Schwank, Mike
,
Mätzler, Christian
in
Brightness
,
Computer simulation
,
Data processing
2017
The L-band radiometry data and in-situ ground and snow measurements performed during the 2016/2017 winter campaign at the Davos-Laret remote sensing field laboratory are presented and discussed. An improved version of the procedure for the computation of L-band brightness temperatures from ELBARA radiometer raw data is introduced. This procedure includes a thorough explanation of the calibration and filtering including a refined radio frequency interference (RFI) mitigation approach. This new mitigation approach not only performs better than conventional “normality” tests (kurtosis and skewness) but also allows for the quantification of measurement uncertainty introduced by non-thermal noise contributions. The brightness temperatures of natural snow covered areas and areas with a reflector beneath the snow are simulated for varying amounts of snow liquid water content distributed across the snow profile. Both measured and simulated brightness temperatures emanating from natural snow covered areas and areas with a reflector beneath the snow reveal noticeable sensitivity with respect to snow liquid water. This indicates the possibility of estimating snow liquid water using L-band radiometry. It is also shown that distinct daily increases in brightness temperatures measured over the areas with the reflector placed on the ground indicate the onset of the snow melting season, also known as “early-spring snow”.
Journal Article
Retrieval of Snow Depth on Arctic Sea Ice from the FY3B/MWRI
2021
Given their high albedo and low thermal conductivity, snow and sea ice are considered key reasons for amplified warming in the Arctic. Snow-covered sea ice is a more effective insulator, which greatly limits the energy and momentum exchange between the atmosphere and surface, and further controls the thermal dynamic processes of snow and ice. In this study, using the Microwave Emission Model of Layered Snowpacks (MEMLS), the sensitivities of the brightness temperatures (TBs) from the FengYun-3B/MicroWave Radiometer Imager (FY3B/MWRI) to changes in snow depth were simulated, on both first-year and multiyear ice in the Arctic. Further, the correlation coefficients between the TBs and snow depths in different atmospheric and sea ice environments were investigated. Based on the simulation results, the most sensitive factors to snow depth, including channels of MWRI and their combination form, were determined for snow depth retrieval. Finally, using the 2012–2013 Operational IceBridge (OIB) snow depth data, retrieval algorithms of snow depth were developed for the Arctic on first-year and multiyear ice, separately. Validation using the 2011 OIB data indicates that the bias and standard deviation (Std) of the algorithm are 2.89 cm and 2.6 cm on first-year ice (FYI), respectively, and 1.44 cm and 4.53 cm on multiyear ice (MYI), respectively.
Journal Article
Validation of the SNTHERM Model Applied for Snow Depth, Grain Size, and Brightness Temperature Simulation at Meteorological Stations in China
2020
Validation of the snow process model is an important preliminary work for the snow parameter estimation. The snow grain growth is a continuous and accumulative process, which cannot be evaluated without comparing with the observations in snow season scale. In order to understand the snow properties in the Asian Water Tower region (including Xinjiang province and the Tibetan Plateau) and enhance the use of modeling tools, an extended snow experiment at the foot of the Altay Mountain was designed to validate and improve the coupled physical Snow Thermal Model (SNTHERM) and the Microwave Emission Model of Layered Snowpacks (MEMLS). By matching simultaneously the observed snow depth, geometric grain size, and observed brightness temperature (TB), with an RMSE of 1.91 cm, 0.47 mm, and 4.43 K (at 36.5 GHz, vertical polarization), respectively, we finalized the important model coefficients, which are the grain growth coefficient and the grain size to exponential correlation length conversion coefficients. When extended to 102 meteorological stations in the 2008–2009 winter, the SNTHERM predicted the daily snow depth with an accuracy of 2–4 cm RMSE, and the coupled SNTHERM-MEMLS model predicted the satellite-observed TB with an accuracy of 13.34 K RMSE at 36.5 GHz, vertical polarization, with the fractional snow cover considered.
Journal Article
Antarctic Snowmelt Detected by Diurnal Variations of AMSR-E Brightness Temperature
2018
Antarctic surface snowmelt is sensitive to the polar climate. The ascending and descending passes of the Advanced Microwave Scanning Radiometer for Earth Observing System Sensor (AMSR-E) observed the Antarctic ice sheet in the afternoon (the warmest period) and at midnight (a cold period), enabling us to make full use of the diurnal amplitude variations (DAV) in brightness temperature (Tb) to detect snowmelt. The DAV in vertically polarized 36.5 GHz Tb (DAV36V) is extremely sensitive to liquid water and can reduce the effects of the structural changes in snowpacks during melt seasons. A set of controlled experiments based on the microwave emission model of layered snow (MEMLS) were conducted to study the changes of the vertically polarized 36.5 GHz Tb (Δ36V) during the transitions from dry to wet snow regimes. Results of the experiments suggest that 9 K can be used as a DAV36V threshold to recognize snowmelt. The analyses of snowmelt suggest that the Antarctic ice sheet began to melt in November and became almost completely frozen in late March of the following year. The total cumulative melt area from 2002 to 2011 was 2.44 × 106 km2, i.e., 17.58% of the Antarctic ice sheet. The annual cumulative melt area showed considerable fluctuations, with a significant (above 90% confidence level) drop of 5.24 × 104 km2/year in the short term. Persistent snowmelt (i.e., melt that continues for at least three days) detected by AMSR-E and hourly air temperatures (Tair) were very consistent. Though melt seasons became longer in the western Antarctic Peninsula and the Shackleton Ice Shelf, Antarctica was subjected to considerable decreases in duration and melting days in stable melt areas, i.e., −0.64 and −0.81 days/year, respectively. Surface snowmelt in Antarctica decreased temporally and spatially from 2002 to 2011.
Journal Article
Snow Depth Retrieval in Farmland Based on a Statistical Lookup Table from Passive Microwave Data in Northeast China
by
Gu, Lingjia
,
Wei, Yanlin
,
Fan, Xintong
in
Ablation
,
Agricultural land
,
Agricultural management
2019
At present, passive microwave remote sensing is the most efficient method to estimate snow depth (SD) at global and regional scales. Farmland covers 46% of Northeast China and accurate SD retrieval throughout the whole snow season has great significance for the agriculture management field. Based on the results of the statistical analysis of snow properties in Northeast China from December 2017 to January 2018, conducted by the China snow investigation project, snow characteristics such as snow grain size (SGS), snow density, snow thickness, and temperature of the layered snowpack were measured and analyzed in detail. These characteristics were input to the microwave emission model of layered snowpacks (MEMLS) to simulate the brightness temperature (TB) time series of snow-covered farmland in the periods of snow accumulation, stabilization, and ablation. Considering the larger SGS of the thick depth hoar layer that resulted in a rapid decrease of simulated TBs, effective SGS was proposed to minimize the simulation errors and ensure that the MEMLS can be correctly applied to satellite data simulation. Statistical lookup tables (LUTs) for MWRI and AMSR2 data were generated to represent the relationship between SD and the brightness temperature difference (TBD) at 18 and 36 GHz. The SD retrieval results based on the LUT were compared with the actual SD and the SD retrieved by Chang’s algorithm, Foster’s algorithm, the standard MWRI algorithm, and the standard AMSR2 algorithm. The results demonstrated that the proposed algorithm based on the statistical LUT achieved better accuracy than the other algorithms due to its incorporation of the variation in snow characteristics with the age of snow cover. The average root mean squared error of the SD for the whole snow season was approximately 3.97 and 4.22 cm for MWRI and AMSR2, respectively. The research results are beneficial for monitoring SD in the farmland of Northeast China.
Journal Article
Evaluation of the Effective Microstructure Parameter of the Microwave Emission Model of Layered Snowpack for Multiple-Layer Snow
2021
Natural snow, one of the most important components of the cryosphere, is fundamentally a layered medium. In forward simulation and retrieval, a single-layer effective microstructure parameter is widely used to represent the emission of multiple-layer snowpacks. However, in most cases, this parameter is fitted instead of calculated based on a physical theory. The uncertainty under different frequencies, polarizations, and snow conditions is uncertain. In this study, we explored different methods to reduce the layered snow properties to a set of single-layer values that can reproduce the same brightness temperature (TB) signal. A validated microwave emission model of layered snowpack (MEMLS) was used as the modelling tool. Multiple-layer snow TB from the snow’s surface was compared with the bulk TB of single-layer snow. The methods were tested using snow profile samples from the locally validated and global snow process model simulations, which follow the natural snow’s characteristics. The results showed that there are two factors that play critical roles in the stability of the bulk TB error, the single-layer effective microstructure parameter, and the reflectivity at the air–snow and snow–soil boundaries. It is important to use the same boundary reflectivity as the multiple-layer snow case calculated using the snow density at the topmost and bottommost layers instead of the average density. Afterwards, a mass-weighted average snow microstructure parameter can be used to calculate the volume scattering coefficient at 10.65 to 23.8 GHz. At 36.5 and 89 GHz, the effective microstructure parameter needs to be retrieved based on the product of the snow layer transmissivity. For thick snow, a cut-off threshold of 1/e is suggested to be used to include only the surface layers within the microwave penetration depth. The optimal method provides a root mean squared error of bulk TB of less than 5 K at 10.65 to 36.5 GHz and less than 10 K at 89 GHz for snow depths up to 130 cm.
Journal Article
Les tensions demeurent vives en Ex-Yougoslavie
2009
Rendons-nous maintenant dans l'ex-Yougoslavie, une région dont on ne parle plus beaucoup mais où, malgré la fin de la guerre, les tensions demeurent très vives, vous allez voir. L'indépendance du Kosovo, déclarée l'an dernier, n'a jamais été reconnue par la Serbie, la république voisine, avec comme résultat que la minorité serbe qui habite au Kosovo se considère toujours en Serbie.
Transcript