Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
396
result(s) for
"MERISTEMAS"
Sort by:
Plant meristems: CLAVATA3/ESR-related signaling in the shoot apical meristem and the root apical meristem
by
Miwa, H.(Tokyo Univ. (Japan))
,
Fukuda, H
,
Sawa, S
in
aerial parts
,
APICAL MERISTEMS
,
Biomedical and Life Sciences
2009
The plant meristems, shoot apical meristem (SAM) and root apical meristem (RAM), are unique structures made up of a self-renewing population of undifferentiated pluripotent stem cells. The SAM produces all aerial parts of postembryonic organs, and the RAM promotes the continuous growth of roots. Even though the structures of the SAM and RAM differ, the signaling components required for stem cell maintenance seem to be relatively conserved. Both meristems utilize cell-to-cell communication to maintain proper meristematic activities and meristem organization and to coordinate new organ formation. In SAM, an essential regulatory mechanism for meristem organization is a regulatory loop between WUSCHEL (WUS) and CLAVATA (CLV), which functions in a non-cell-autonomous manner. This intercellular signaling network coordinates the development of the organization center, organ boundaries and distant organs. The CLAVATA3/ESR (CLE)-related genes produce signal peptides, which act non-cell-autonomously in the meristem regulation in SAM. In RAM, it has been suggested that a similar mechanism can regulate meristem maintenance, but these functions are largely unknown. Here, we overview the WUS-CLV signaling network for stem cell maintenance in SAM and a related mechanism in RAM maintenance. We also discuss conservation of the regulatory system for stem cells in various plant species.
Journal Article
The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats
1996
Arabidopsis Landsberg erecta is one of the most popular ecotypes and is used widely for both molecular and genetic studies. It harbors the erecta (er) mutation, which confers a compact inflorescence, blunt fruits, and short petioles. We have identified five er mutant alleles from ecotypes Columbia and Wassilewskija. Phenotypic characterization of the mutant alleles suggests a role for the ER gene in regulating the shape of organs originating from the shoot apical meristem. We cloned the ER gene, and here, we report that it encodes a putative receptor protein kinase. The deduced ER protein contains a cytoplasmic protein kinase catalytic domain, a transmembrane region, and an extracellular domain consisting of leucine-rich repeats, which are thought to interact with other macromolecules. Our results suggest that cell-cell communication mediated by a receptor kinase has an important role in plant morphogenesis.
Journal Article
A knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants
1994
The homeobox gene knotted1 (kn1) was first isolated by transposon tagging a dominant leaf mutant in maize. Related maize genes, isolated by virtue ot sequence conservation within the homeobox, fall into two classes based on sequence similarity and expression patterns. Here, we report the characterization of two genes, KNAT1 and KNAT2 (for knotted-like from Arabidopsis thaliana) that were cloned from Arabidopsis using the kn1 homeobox as a heterologous probe. The homeodomains of KNAT1 and KNAT2 are very similar to the homeodomains of proteins encoded by class 1 maize genes, ranging from 78 to 95% amino acid identity. Overall, the deduced KNAT1 and KNAT2 proteins share amino acid identities of 53 and 40%, respectively, with the KN1 protein. Intron positions are also fairly well conserved among KNAT1, KNAT2, and kn1. Based on in situ hybridization analysis, the expression pattern of KNAT1 during vegetative development is similar to that of class 1 maize genes. In the shoot apex, KNAT1 transcript is localized primarily to the shoot apical meristem; down-regulation of expression occurs as leaf primordia are initiated. In contrast to the expression of class 1 maize genes in floral and inflorescence meristems, the expression of KNAT1 in the shoot meristem decreases during the floral transition and is restricted to the cortex of the inflorescence stem. Transgenic Arabidopsis plants carrying the KNAT1 cDNA and the kn1 cDNA fused to the cauliflower mosaic virus 35S promoter were generated. expression of KNAT1 and kn1 resulted in highly abnormal leaf morphology that included severely lobed leaves. The expression pattern of KNAT1 in the shoot meristem combined with the results of transgenic overexpression experiments supports the hypothesis that class 1 kn1-like genes play a role in morphogenesis
Journal Article
Identification of a meristem L1 layer-specific gene in Arabidopsis that is expressed during embryonic pattern formation and defines a new class of homeobox genes
by
Nadeau, J.A
,
Lu, P. (University of California, Davis, CA.)
,
O'Neill, S.D
in
Amino Acid Sequence
,
amino acid sequences
,
Amino acids
1996
Homeobox genes are master regulatory genes that specify the body plan and control development of many eukaryotic organisms, including plants. We isolated and characterized a cDNA designated ATML1 (for Arabidopsis thaliana meristem L1 layer) that encodes a novel homeodomain protein. The ATML1 protein shares high sequence homology inside and outside of the homeodomain with both the Phalaenopsis 039 and the Arabidopsis GLABRA2 (GL2) homeodomain proteins, which together define a new class of plant homeodomain-containing proteins, designated HD-GL2. The ATML1 gene was first expressed in the apical cell after the first asymmetric division of the zygote and continued to be expressed in all proembryo cells until the eight-cell stage. In the 16-cell proembryo, the ATML1 gene showed a distinct pattern of expression, with its mRNA becoming restricted to the protoderm. In the torpedo stage of embryo development, ATML1 mRNA disappeared altogether but reappeared later only in the L1 layer of the shoot apical meristem in the mature embryo. After germination, this L1 layer-specific pattern of expression was maintained in the vegetative shoot apical meristem, inflorescence, and floral meristems, as well as in the young floral organ primordia. Finally, ATML1 mRNA accumulated in the protoderm of the ovule primordia and integuments and gradually became restricted in its expression to the endothelium surrounding the embryo sac. We propose that ATML1 may be involved in setting up morphogenetic boundaries of positional information necessary for controlling cell specification and pattern formation. In addition, ATML1 provides an early molecular marker for the establishment of both apical-basal and radial patterns during plant embryogenesis
Journal Article
Localized upregulation of a new expansin gene predicts the site of leaf formation in the tomato meristem
by
Reinhardt, D. (University of Berne, Berne, Switzerland.)
,
Mandel, T
,
Kuhlemeier, C
in
Amino Acid Sequence
,
AMINO ACID SEQUENCES
,
APICAL MERISTEMS
1998
Expansins are extracellular proteins that increase plant cell wall extensibility in vitro and are thought to be involved in cell expansion. We showed in a previous study that administration of an exogenous expansin protein can trigger the initiation of leaflike structures on the shoot apical meristem of tomato. Here, we studied the expression patterns of two tomato expansin genes, LeExp2 and LeExp18. LeExp2 is preferentially expressed in expanding tissues, whereas LeExp18 is expressed preferentially in tissues with meristematic activity. In situ hybridization experiments showed that LeExp18 expression is elevated in a group of cells, called I1, which is the site of incipient leaf primordium initiation. Thus, LeExp18 expression is a molecular marker for leaf initiation, predicting the site of primordium formation at a time before histological changes can be detected. We propose a model for the regulation of phyllotaxis that postulates a crucial role for expansin in leaf primordium initiation
Journal Article
A possible role for kinase-associated protein phosphatase in the Arabidopsis CLAVATA1 signaling pathway
by
Williams, Robert W.
,
Wilson, Jeanne M.
,
Meyerowitz, Elliot M.
in
ACTIVIDAD ENZIMATICA
,
ACTIVITE ENZYMATIQUE
,
Alleles
1997
Continuous growth and development in plants are accomplished by meristems, groups of undifferentiated cells that persist as stem cells and initiate organs. While the structures of the apical and floral meristems in dicotyledonous plants have been well described, little is known about the underlying molecular mechanisms controlling cell proliferation and differentiation in these structures. We have shown previously that the CLAVATA1 (CLV1) gene in Arabidopsis encodes a receptor kinase-like protein that controls the size of the apical and floral meristems. Here, we show that KAPP, a gene encoding a kinase-associated protein phosphatase, is expressed in apical and young floral meristems, along with CLV1. Overexpression of KAPP mimics the clv1 mutant phenotype. Furthermore, CLV1 has kinase activity: it phosphorylates both itself and KAPP. Finally, KAPP binds and dephosphorylates CLV1. We present a model where KAPP functions as a negative regulator of the CLAVATA1 signal transduction pathway.
Journal Article
Genetic control of flowering time in Arabidopsis
by
Alonso-Blanco, C
,
Koornneef, M. (Wageningen Agricultural University, Wageningen, The Netherlands.)
,
Soppe, W
in
ARABIDOPSIS THALIANA
,
BIOLOGICAL RHYTHMS
,
CARTE GENETIQUE
1998
▪ Abstract The timing of the transition from vegetative to reproductive development is of great fundamental and applied interest but is still poorly understood. Recently, molecular-genetic approaches have been used to dissect this process in Arabidopsis. The genetic variation present among a large number of mutants with an early- or late-flowering phenotype, affecting the control of both environmental and endogenous factors that influence the transition to flowering, is described. The genetic, molecular, and physiological analyses have led to identification of different components involved, such as elements of photoperception and the circadian rhythm. Furthermore, elements involved in the signal transduction pathways to flowering have been identified by the cloning of some floral induction genes and their target genes.
Journal Article
Auxin as a positional signal in pattern formation in plants
by
Uggla, C. (Swedish University of Agricultural Sciences, Umea, Sweden.)
,
Sundberg, B
,
Moritz, T
in
Auxins
,
CAMBIUM
,
indole acetic acid
1996
By using a novel, extremely sensitive and specific gas chromatography-mass spectrometry technique we demonstrate in Pinus sylvestris (L.) trees the existence of a steep radial concentration gradient of the endogenous auxin, indole-3-acetic acid, over the lateral meristem responsible for the bulk of plant secondary growth, the vascular cambium. This is the first evidence that plant morphogens, such as indole-3-acetic acid, occur in concentration gradients over developing tissues. This finding gives evidence for a regulatory system in plants based on positional signaling, similar to animal systems.
Journal Article
ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis
1998
The plant hormone ethylene regulates a variety of processes of growth and development. To identify components in the ethylene signal transduction pathway, we screened for ethylene-insensitive mutants in Arabidopsis thaliana and isolated a dominant etr2-1 mutant. The etr2-1 mutation confers ethylene insensitivity in several processes, including etiolated seedling elongation, leaf expansion, and leaf senescence. Double mutant analysis indicates that ETR2 acts upstream of CTR1, which codes for a Raf-related protein kinase. We cloned the ETR2 gene on the basis of its map position, and we found that it exhibits sequence homology to the ethylene receptor gene ETR1 and the ETR1-like ERS gene. ETR2 may thus encode a third ethylene receptor in Arabidopsis, transducing the hormonal signal through its \"two-component\" structure. Expression studies show that ETR2 is ubiquitously expressed and has a higher expression in some tissues, including inflorescence and floral meristems, petals, and ovules
Journal Article