Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
112,545 result(s) for "METABOLIC DISORDERS"
Sort by:
Neonatal Screening in Europe Revisited: An ISNS Perspective on the Current State and Developments Since 2010
Neonatal screening (NBS) was initiated in Europe during the 1960s with the screening for phenylketonuria. The panel of screened disorders (“conditions”) then gradually expanded, with a boost in the late 1990s with the introduction of tandem mass spectrometry (MS/MS), making it possible to screen for 40–50 conditions using a single blood spot. The most recent additions to screening programmes (screening for cystic fibrosis, severe combined immunodeficiency and spinal muscular atrophy) were assisted by or realised through the introduction of molecular technologies. For this survey, we collected data from 51 European countries. We report the developments between 2010 and 2020 and highlight the achievements reached with the progress made in this period. We also identify areas where further progress can be made, mainly by exchanging knowledge and learning from experiences in neighbouring countries. Between 2010 and 2020, most NBS programmes in geographical Europe matured considerably, both in terms of methodology (modernised) and with regard to the panel of conditions screened (expanded). These developments indicate that more collaboration in Europe through European organisations is gaining momentum. We can only accomplish the timely detection of newborn infants potentially suffering from one of the many rare diseases and take appropriate action by working together.
Metabolic syndrome and metabolic abnormalities in patients with major depressive disorder: a meta-analysis of prevalences and moderating variables
Individuals with depression have an elevated risk of cardiovascular disease (CVD) and metabolic syndrome (MetS) is an important risk factor for CVD. We aimed to clarify the prevalence and correlates of MetS in persons with robustly defined major depressive disorder (MDD). We searched Medline, PsycINFO, EMBASE and CINAHL up until June 2013 for studies reporting MetS prevalences in individuals with MDD. Medical subject headings 'metabolic' OR 'diabetes' or 'cardiovascular' or 'blood pressure' or 'glucose' or 'lipid' AND 'depression' OR 'depressive' were used in the title, abstract or index term fields. Manual searches were conducted using reference lists from identified articles. The initial electronic database search resulted in 91 valid hits. From candidate publications following exclusions, our search generated 18 studies with interview-defined depression (n = 5531, 38.9% male, mean age = 45.5 years). The overall proportion with MetS was 30.5% [95% confidence interval (CI) 26.3-35.1] using any standardized MetS criteria. Compared with age- and gender-matched control groups, individuals with MDD had a higher MetS prevalence [odds ratio (OR) 1.54, 95% CI 1.21-1.97, p = 0.001]. They also had a higher risk for hyperglycemia (OR 1.33, 95% CI 1.03-1.73, p = 0.03) and hypertriglyceridemia (OR 1.17, 95% CI 1.04-1.30, p = 0.008). Antipsychotic use (p < 0.05) significantly explained higher MetS prevalence estimates in MDD. Differences in MetS prevalences were not moderated by age, gender, geographical area, smoking, antidepressant use, presence of psychiatric co-morbidity, and median year of data collection. The present findings strongly indicate that persons with MDD are a high-risk group for MetS and related cardiovascular morbidity and mortality. MetS risk may be highest in those prescribed antipsychotics.
The additive impact of cardio‐metabolic disorders and psychiatric illnesses on accelerated brain aging
Severe mental illnesses (SMI) including major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia spectrum disorder (SSD) elevate accelerated brain aging risks. Cardio‐metabolic disorders (CMD) are common comorbidities in SMI and negatively impact brain health. We validated a linear quantile regression index (QRI) approach against the machine learning “BrainAge” index in an independent SSD cohort (N = 206). We tested the direct and additive effects of SMI and CMD effects on accelerated brain aging in the N = 1,618 (604 M/1,014 F, average age = 63.53 ± 7.38) subjects with SMI and N = 11,849 (5,719 M/6,130 F; 64.42 ± 7.38) controls from the UK Biobank. Subjects were subdivided based on diagnostic status: SMI+/CMD+ (N = 665), SMI+/CMD− (N = 964), SMI−/CMD+ (N = 3,765), SMI−/CMD− (N = 8,083). SMI (F = 40.47, p = 2.06 × 10−10) and CMD (F = 24.69, p = 6.82 × 10−7) significantly, independently impacted whole‐brain QRI in SMI+. SSD had the largest effect (Cohen’s d = 1.42) then BD (d = 0.55), and MDD (d = 0.15). Hypertension had a significant effect on SMI+ (d = 0.19) and SMI− (d = 0.14). SMI effects were direct, independent of MD, and remained significant after correcting for effects of antipsychotic medications. Whole‐brain QRI was significantly (p < 10−16) associated with the volume of white matter hyperintensities (WMH). However, WMH did not show significant association with SMI and was driven by CMD, chiefly hypertension (p < 10−16). We used a simple and robust index, QRI, the demonstrate additive effect of SMI and CMD on accelerated brain aging. We showed a greater effect of psychiatric illnesses on QRI compared to cardio‐metabolic illness. Our findings suggest that subjects with SMI should be among the targets for interventions to protect against age‐related cognitive decline. Severe mental illnesses including major depressive disorder, bipolar disorder, and schizophrenia spectrum disorder elevate accelerated brain aging risks; cardio‐metabolic disorders are common comorbidities and can negatively impact brain health. We used a simple and robust index, QRI, the demonstrate additive effect of SMI and CMD on accelerated brain aging. We showed a greater effect of psychiatric illnesses on QRI compared to cardio‐metabolic illness.
Glycine Metabolism and Its Alterations in Obesity and Metabolic Diseases
Glycine is the proteinogenic amino-acid of lowest molecular weight, harboring a hydrogen atom as a side-chain. In addition to being a building-block for proteins, glycine is also required for multiple metabolic pathways, such as glutathione synthesis and regulation of one-carbon metabolism. Although generally viewed as a non-essential amino-acid, because it can be endogenously synthesized to a certain extent, glycine has also been suggested as a conditionally essential amino acid. In metabolic disorders associated with obesity, type 2 diabetes (T2DM), and non-alcoholic fatty liver disease (NAFLDs), lower circulating glycine levels have been consistently observed, and clinical studies suggest the existence of beneficial effects induced by glycine supplementation. The present review aims at synthesizing the recent advances in glycine metabolism, pinpointing its main metabolic pathways, identifying the causes leading to glycine deficiency—especially in obesity and associated metabolic disorders—and evaluating the potential benefits of increasing glycine availability to curb the progression of obesity and obesity-related metabolic disturbances. This study focuses on the importance of diet, gut microbiota, and liver metabolism in determining glycine availability in obesity and associated metabolic disorders.
Guideline concordant monitoring of metabolic risk in people treated with antipsychotic medication: systematic review and meta-analysis of screening practices
Despite increased cardiometabolic risk in individuals with mental illness taking antipsychotic medication, metabolic screening practices are often incomplete or inconsistent. We undertook a systematic search and a PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) meta-analysis of studies examining routine metabolic screening practices in those taking antipsychotics both for patients in psychiatric care before and following implementation of monitoring guidelines. We identified 48 studies (n=290 534) conducted between 2000 and 2011 in five countries; 25 studies examined predominantly schizophrenia-spectrum disorder populations; 39 studies (n=218 940) examined routine monitoring prior to explicit guidelines; and nine studies (n=71 594) reported post-guideline monitoring. Across 39 studies, routine baseline screening was generally low and above 50% only for blood pressure [69.8%, 95% confidence interval (CI) 50.9-85.8] and triglycerides (59.9%, 95% CI 36.6-81.1). Cholesterol was measured in 41.5% (95% CI 18.0-67.3), glucose in 44.3% (95% CI 36.3-52.4) and weight in 47.9% (95% CI 32.4-63.7). Lipids and glycosylated haemoglobin (HbA1c) were monitored in less than 25%. Rates were similar for schizophrenia patients, in US and UK studies, for in-patients and out-patients. Monitoring was non-significantly higher in case-record versus database studies and in fasting samples. Following local/national guideline implementation, monitoring improved for weight (75.9%, CI 37.3-98.7), blood pressure (75.2%, 95% CI 45.6-95.5), glucose (56.1%, 95% CI 43.4-68.3) and lipids (28.9%, 95% CI 20.3-38.4). Direct head-to-head pre-post-guideline comparison showed a modest but significant (15.4%) increase in glucose testing (p=0.0045). In routine clinical practice, metabolic monitoring is concerningly low in people prescribed antipsychotic medication. Although guidelines can increase monitoring, most patients still do not receive adequate testing.
Metabolic Syndrome and Altered Gut Microbiota in Mice Lacking Toll-Like Receptor 5
Metabolic syndrome is a group of obesity-related metabolic abnormalities that increase an individual's risk of developing type 2 diabetes and cardiovascular disease. Here, we show that mice genetically deficient in Toll-like receptor 5 (TLR5), a component of the innate immune system that is expressed in the gut mucosa and that helps defend against infection, exhibit hyperphagia and develop hallmark features of metabolic syndrome, including hyperlipidemia, hypertension, insulin resistance, and increased adiposity. These metabolic changes correlated with changes in the composition of the gut microbiota, and transfer of the gut microbiota from TLR5-deficient mice to wild-type germ-free mice conferred many features of metabolic syndrome to the recipients. Food restriction prevented obesity, but not insulin resistance, in the TLR5-deficient mice. These results support the emerging view that the gut microbiota contributes to metabolic disease and suggest that malfunction of the innate immune system may promote the development of metabolic syndrome.
The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population
INTRODUCTION AND OBJECTIVES: An obese-type human microbiota with an increased Firmicutes:Bacteroidetes ratio has been described that may link the gut microbiome with obesity and metabolic syndrome (MetS) development. Dietary fat and carbohydrate are modifiable risk factors that may impact on MetS by altering the human microbiome composition. We determined the effect of the amount and type of dietary fat and carbohydrate on faecal bacteria and short chain fatty acid (SCFA) concentrations in people ‘at risk’ of MetS. DESIGN: A total of 88 subjects at increased MetS risk were fed a high saturated fat diet (HS) for 4 weeks (baseline), then randomised onto one of the five experimental diets for 24 weeks: HS; high monounsaturated fat (MUFA)/high glycemic index (GI) (HM/HGI); high MUFA/low GI (HM/LGI); high carbohydrate (CHO)/high GI (HC/HGI); and high CHO/low GI (HC/LGI). Dietary intakes, MetS biomarkers, faecal bacteriology and SCFA concentrations were monitored. RESULTS: High MUFA diets did not affect individual bacterial population numbers but reduced total bacteria and plasma total and LDL-cholesterol. The low fat, HC diets increased faecal Bifidobacterium ( P =0.005, for HC/HGI; P =0.052, for HC/LGI) and reduced fasting glucose and cholesterol compared to baseline. HC/HGI also increased faecal Bacteroides ( P =0.038), whereas HC/LGI and HS increased Faecalibacterium prausnitzii ( P =0.022 for HC/HGI and P =0.018, for HS). Importantly, changes in faecal Bacteroides numbers correlated inversely with body weight ( r =−0.64). A total bacteria reduction was observed for high fat diets HM/HGI and HM/LGI ( P =0.023 and P =0.005, respectively) and HS increased faecal SCFA concentrations ( P <0.01). CONCLUSION: This study provides new evidence from a large-scale dietary intervention study that HC diets, irrespective of GI, can modulate human faecal saccharolytic bacteria, including bacteroides and bifidobacteria. Conversely, high fat diets reduced bacterial numbers, and in the HS diet, increased excretion of SCFA, which may suggest a compensatory mechanism to eliminate excess dietary energy.
Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2
The insulin receptor substrate proteins IRS1 and IRS2 are key targets of the insulin receptor tyrosine kinase and are required for hormonal control of metabolism. Tissues from insulin-resistant and diabetic humans exhibit defects in IRS-dependent signalling, implicating their dysregulation in the initiation and progression of metabolic disease. However, IRS1 and IRS2 are regulated through a complex mechanism involving phosphorylation of >50 serine/threonine residues (S/T) within their long, unstructured tail regions. In cultured cells, insulin-stimulated kinases (including atypical PKC, AKT, SIK2, mTOR, S6K1, ERK1/2 and ROCK1) mediate feedback (autologous) S/T phosphorylation of IRS, with both positive and negative effects on insulin sensitivity. Additionally, insulin-independent (heterologous) kinases can phosphorylate IRS1/2 under basal conditions (AMPK, GSK3) or in response to sympathetic activation and lipid/inflammatory mediators, which are present at elevated levels in metabolic disease (GRK2, novel and conventional PKCs, JNK, IKKβ, mPLK). An emerging view is that the positive/negative regulation of IRS by autologous pathways is subverted/co-opted in disease by increased basal and other temporally inappropriate S/T phosphorylation. Compensatory hyperinsulinaemia may contribute strongly to this dysregulation. Here, we examine the links between altered patterns of IRS S/T phosphorylation and the emergence of insulin resistance and diabetes.
Ubiquitin-Specific Proteases (USPs) and Metabolic Disorders
Ubiquitination and deubiquitination are reversible processes that modify the characteristics of target proteins, including stability, intracellular localization, and enzymatic activity. Ubiquitin-specific proteases (USPs) constitute the largest deubiquitinating enzyme family. To date, accumulating evidence indicates that several USPs positively and negatively affect metabolic diseases. USP22 in pancreatic β-cells, USP2 in adipose tissue macrophages, USP9X, 20, and 33 in myocytes, USP4, 7, 10, and 18 in hepatocytes, and USP2 in hypothalamus improve hyperglycemia, whereas USP19 in adipocytes, USP21 in myocytes, and USP2, 14, and 20 in hepatocytes promote hyperglycemia. In contrast, USP1, 5, 9X, 14, 15, 22, 36, and 48 modulate the progression of diabetic nephropathy, neuropathy, and/or retinopathy. USP4, 10, and 18 in hepatocytes ameliorates non-alcoholic fatty liver disease (NAFLD), while hepatic USP2, 11, 14, 19, and 20 exacerbate it. The roles of USP7 and 22 in hepatic disorders are controversial. USP9X, 14, 17, and 20 in vascular cells are postulated to be determinants of atherosclerosis. Moreover, mutations in the Usp8 and Usp48 loci in pituitary tumors cause Cushing syndrome. This review summarizes the current knowledge about the modulatory roles of USPs in energy metabolic disorders.