Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
340
result(s) for
"MK-801"
Sort by:
G Protein-Coupled Estrogen Receptor 1 Knockout Deteriorates MK-801-Induced Learning and Memory Impairment in Mice
2020
The role of estrogen receptors in neuroprotection and cognition has been extensively studied in humans over the past 20 years. Recently, studies have shifted their focus to the use of selective estrogen receptor modulators in the treatment of mental illnesses in the central nervous system. We conducted this study to test the behavioral changes shown by G protein-coupled estrogen receptor 1 knockout (GPER1 KO) and wild-type (WT) mice with MK-801-induced schizophrenia (SZ). GPER1 KO and WT mice received intraperitoneal injections of MK-801 for 14 continuous days. Behavioral, learning and memory, and social interaction changes were evaluated by using the IntelliCage system, open-field, three-chamber social interaction, and novel object recognition tests (NORT). The protein expression levels of the NR2B/CaMKII/CREB signaling pathway were tested via Western blot analysis. The KO SZ group was more likely to show impaired long-term learning and memory function than the WT SZ group. Learning and memory functions were also impaired in the KO Con group. MK-801 administration to the GPER1-KO and WT groups resulted in memory deficiencies and declining learning capabilities. GPER1 deficiency downregulated the expression levels of proteins related to the NR2B/CaMKII/CREB signaling pathway. Our study suggested that GPER1 played an important role in cognitive, learning, and memory functions in the MK-801-induced mouse model of SZ. The mechanism of this role might partially involve the downregulation of the proteins related to the NR2B/CaMKII/CREB signaling pathway. Further studies should focus on the effect of GPER1 on the pathogenesis of SZ in vivo and in vitro .
Journal Article
MK-801 and cognitive functions: Investigating the behavioral effects of a non-competitive NMDA receptor antagonist
by
Lustyk, Klaudia
,
Janus, Anna
,
Pytka, Karolina
in
Animal experimentation
,
Animals
,
Anticonvulsants
2023
Rationale
MK-801 (dizocilpine) is a non-competitive NMDA receptor antagonist originally explored for anticonvulsant potential. Despite its original purpose, its amnestic properties led to the development of pivotal models of various cognitive impairments widely employed in research and greatly impacting scientific progress. MK-801 offers several advantages; however, it also presents drawbacks, including inducing dose-dependent hyperlocomotion or ambiguous effects on anxiety, which can impact the interpretation of behavioral research results.
Objectives
The present review attempts to summarize and discuss the effects of MK-801 on different types of memory and cognitive functions in animal studies.
Results
A plethora of behavioral research suggests that MK-801 can detrimentally impact cognitive functions. The specific effect of this compound is influenced by variables including developmental stage, gender, species, strain, and, crucially, the administered dose. Notably, when considering the undesirable effects of MK-801, doses up to 0.1 mg/kg were found not to induce stereotypy or hyperlocomotion.
Conclusion
Dizocilpine continues to be of significant importance in preclinical research, facilitating the exploration of various procognitive therapeutic agents. However, given its potential undesirable effects, it is imperative to meticulously determine the appropriate dosages and conduct supplementary evaluations for any undesirable outcomes, which could complicate the interpretation of the findings.
Journal Article
Advantages and Limitations of Animal Schizophrenia Models
2022
Mental illness modeling is still a major challenge for scientists. Animal models of schizophrenia are essential to gain a better understanding of the disease etiopathology and mechanism of action of currently used antipsychotic drugs and help in the search for new and more effective therapies. We can distinguish among pharmacological, genetic, and neurodevelopmental models offering various neuroanatomical disorders and a different spectrum of symptoms of schizophrenia. Modeling schizophrenia is based on inducing damage or changes in the activity of relevant regions in the rodent brain (mainly the prefrontal cortex and hippocampus). Such artificially induced dysfunctions approximately correspond to the lesions found in patients with schizophrenia. However, notably, animal models of mental illness have numerous limitations and never fully reflect the disease state observed in humans.
Journal Article
The Trace Kynurenine, Cinnabarinic Acid, Displays Potent Antipsychotic-Like Activity in Mice and Its Levels Are Reduced in the Prefrontal Cortex of Individuals Affected by Schizophrenia
by
Martinello, Katiuscia
,
Chocyk, Agnieszka
,
Traficante, Anna
in
Antipsychotics
,
Psychotropic drugs
,
Regular
2020
Abstract
Cinnabarinic acid (CA) is a kynurenine metabolite that activates mGlu4 metabotropic glutamate receptors. Using a highly sensitive ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS-MS) method, we found that CA is present in trace amounts in human brain tissue. CA levels were largely reduced in the prefrontal cortex (PFC) of individuals affected by schizophrenia. This reduction did not correlate with age, sex, duration of the disease, and duration and type of antipsychotic medication and might, therefore, represent a trait of schizophrenia. Interestingly, systemic treatment with low doses of CA (<1 mg/kg, i.p.) showed robust efficacy in several behavioral tests useful to study antipsychotic-like activity in mice and rats and attenuated MK-801-evoked glutamate release. CA failed to display antipsychotic-like activity and inhibit excitatory synaptic transmission in mice lacking mGlu4 receptors. These findings suggest that CA is a potent endogenous antipsychotic-like molecule and reduced CA levels in the PFC might contribute to the pathophysiology of schizophrenia.
Journal Article
In vitro clustered cortical networks reveal NMDA-dependent modulation of repetitive activation sequences
by
Brofiga, Martina
,
Tedesco, Mariateresa
,
Bacchetti, Francesca
in
cortical clustered networks
,
MK-801
,
multi-electrode array (MEA)
2025
The development of in vitro networks composed of distinct but interacting neuronal sub-populations (clusters) has advanced the study of emergent behaviors in neural networks as individual functional units. In a previous work, we developed an in vitro model of a network formed by four mutually interconnected clusters of rat embryonic cortical neurons cultured on multi-electrode arrays (MEA), where we observed recurring, spatially and temporally structured activation sequences. In the present study, we examined the effects of NMDAR blockade (MK-801) to modulate such temporal patterns. We found that MK-801 reduced the overall excitability of the network and disrupted the diversity of repeated activation patterns, while paradoxically increasing their temporal persistence. This led the network to transition from a dynamic regime characterized by frequent and flexible repetitions to one dominated by fewer, more stable and enduring activation motifs. Functional connectivity analysis further revealed a selective weakening of inter-cluster links alongside a strengthening of intra-cluster connections. This reorganization likely explains the observed reduction in activity propagation between clusters and the simultaneous emergence of more persistent activation sequences among clusters. Data suggest that clustered neural networks serve as semi-autonomous modules, capable of sustaining internal dynamics even under diminished excitatory drive. The stable repetition of activation patterns may reflect a functional “closure” within clusters, forming self-sustained loops that enable the reactivation of previously formed motifs. From a neuroengineering perspective, this model provides a versatile platform to explore how spatiotemporal neural dynamics underpin inter-network communication, information encoding, and complex cortical functions.
Journal Article
Chronic exposure to MK-801 leads to olfactory deficits and reduced neurogenesis in the olfactory bulbs of adult male mice
2024
MK-801 is a drug widely used in preclinical studies to model schizophrenia in animals. Its distinctive feature is the ability to mimic pathological changes in social interactions. Unlike humans, rodents rely heavily on their sense of smell for social interaction. Since, as previously demonstrated, it also impairs neurogenesis, we set out to determine whether olfactory impairment is associated with chronic administration of the drug.
The mice were divided into two groups, of which one was administered the drug for 3 weeks, and the other only once. Olfaction and social transfer of food preferences were tested after the drug administration period. At the end of the experiment, an immunofluorescence study was performed to determine differences in neurogenesis in the olfactory bulbs.
An olfactory deficit was observed in animals that received the drug for 3 weeks. These changes were also accompanied by an abnormal lack of food preference in the social transmission test. As a result of a morphological study, a pronounced decrease in the number of new neurons was found in the olfactory bulbs of the animals that had received the drug.
Our results indicate that at least some of the impairments in social behavior of the animals exposed to NMDA receptor antagonists are likely caused by changes in the sense of smell. These changes are associated with disruptions of neurogenesis.
Journal Article
Crocin alleviates schizophrenia-like symptoms in rats by upregulating silent information regulator-1 and brain derived neurotrophic factor
by
Wan, Hao
,
Sun, Xi-juan
,
Zhao, Xin
in
Animals
,
Brain derived neurotrophic factor
,
Brain-Derived Neurotrophic Factor - genetics
2020
In neonatal rats, MK-801 treatments can produce schizophrenia-like symptoms. Crocin is a water soluble carotenoid in Saffron that exerts potent neuroprotective effects. This work aimed to demonstrate the function of crocin in the alleviation of motor and cognitive impairments elicited by MK-801 in a neonatal rodent schizophrenia model, and to illustrate the underlying molecular mechanisms.
Rats were treated with vehicle, MK-801 (1 mg/kg), MK-801 + 25 mg/kg crocin, or MK-801 + 50 mg/kg crocin. Motor learning and coordination, locomotion and exploratory activities, as well as spatial memory were assessed using the rotarod test, pen field test, and the Morris water maze test, respectively. Relative mRNA and protein levels of genes of interest were analyzed using qRT-PCR and Western blot assays, respectively.
In the hippocampus of rats with MK-801-elicited schizophrenia, administration of crocin elevated the expression of silent information regulator-1 (SIRT1) and brain derived neurotrophic factor (BDNF), and relieved the oxidative stress. The learning deficits and motor perturbations caused by MK-801 treatments were also alleviated by the crocin administration.
Collectively, crocin has exerted neuroprotective effects in the rat model of MK-801-elicited schizophrenia, via regulations of SIRT1 and downstream BDNF expression in the hippocampus.
•Crocin restores MK-801-repressed production of SIRT1 and BDNF.•Crocin restores CREB phosphorylation in the MK-801-treated rat hippocampus.•Crocin relieves oxidative stress in the MK-801-treated rat hippocampus.•Crocin attenuates behavioural deficits in MK-801-treated rats.•Crocin improves spatial learning of MK-801-treated rats.
Journal Article
Theta-frequency medial septal nucleus deep brain stimulation increases neurovascular activity in MK-801-treated mice
by
Zepeda, Nancy
,
Liu, Charles
,
Lee, Darrin J.
in
deep brain stimulation
,
functional ultrasound imaging
,
hippocampus
2024
Deep brain stimulation (DBS) has shown remarkable success treating neurological and psychiatric disorders including Parkinson's disease, essential tremor, dystonia, epilepsy, and obsessive-compulsive disorder. DBS is now being explored to improve cognitive and functional outcomes in other psychiatric conditions, such as those characterized by reduced N-methyl-D-aspartate (NMDA) function (i.e., schizophrenia). While DBS for movement disorders generally involves high-frequency (>100 Hz) stimulation, there is evidence that low-frequency stimulation may have beneficial and persisting effects when applied to cognitive brain networks.
In this study, we utilize a novel technology, functional ultrasound imaging (fUSI), to characterize the cerebrovascular impact of medial septal nucleus (MSN) DBS under conditions of NMDA antagonism (pharmacologically using Dizocilpine [MK-801]) in anesthetized male mice.
Imaging from a sagittal plane across a variety of brain regions within and outside of the septohippocampal circuit, we find that MSN theta-frequency (7.7 Hz) DBS increases hippocampal cerebral blood volume (CBV) during and after stimulation. This effect was not present using standard high-frequency stimulation parameters [i.e., gamma (100 Hz)].
These results indicate the MSN DBS increases circuit-specific hippocampal neurovascular activity in a frequency-dependent manner and does so in a way that continues beyond the period of electrical stimulation.
Journal Article
Systematic assessment of the replicability and generalizability of preclinical findings: Impact of protocol harmonization across laboratory sites
by
Voelkl, Bernhard
,
Ramboz, Sylvie
,
Kas, Martien J.
in
Animals
,
Benzodiazepines
,
Biology and Life Sciences
2022
The influence of protocol standardization between laboratories on their replicability of preclinical results has not been addressed in a systematic way. While standardization is considered good research practice as a means to control for undesired external noise (i.e., highly variable results), some reports suggest that standardized protocols may lead to idiosyncratic results, thus undermining replicability. Through the EQIPD consortium, a multi-lab collaboration between academic and industry partners, we aimed to elucidate parameters that impact the replicability of preclinical animal studies. To this end, 3 experimental protocols were implemented across 7 laboratories. The replicability of results was determined using the distance travelled in an open field after administration of pharmacological compounds known to modulate locomotor activity (MK-801, diazepam, and clozapine) in C57BL/6 mice as a worked example. The goal was to determine whether harmonization of study protocols across laboratories improves the replicability of the results and whether replicability can be further improved by systematic variation (heterogenization) of 2 environmental factors (time of testing and light intensity during testing) within laboratories. Protocols were tested in 3 consecutive stages and differed in the extent of harmonization across laboratories and standardization within laboratories: stage 1, minimally aligned across sites (local protocol); stage 2, fully aligned across sites (harmonized protocol) with and without systematic variation (standardized and heterogenized cohort); and stage 3, fully aligned across sites (standardized protocol) with a different compound. All protocols resulted in consistent treatment effects across laboratories, which were also replicated within laboratories across the different stages. Harmonization of protocols across laboratories reduced between-lab variability substantially compared to each lab using their local protocol. In contrast, the environmental factors chosen to introduce systematic variation within laboratories did not affect the behavioral outcome. Therefore, heterogenization did not reduce between-lab variability further compared to the harmonization of the standardized protocol. Altogether, these findings demonstrate that subtle variations between lab-specific study protocols may introduce variation across independent replicate studies even after protocol harmonization and that systematic heterogenization of environmental factors may not be sufficient to account for such between-lab variation. Differences in replicability of results within and between laboratories highlight the ubiquity of study-specific variation due to between-lab variability, the importance of transparent and fine-grained reporting of methodologies and research protocols, and the importance of independent study replication.
Journal Article
Effects of beta-hydroxybutyrate administration on MK-801-induced schizophrenia-like behaviour in mice
2020
RationaleImpaired cerebral glucose metabolism is a core pathological feature of schizophrenia. We recently demonstrated that a ketogenic diet, causing a shift from glycolysis to ketosis, normalized schizophrenia-like behaviours in an acute N-methyl-D-aspartate (NMDA) receptor antagonist model of the illness. Ketogenic diet produces the ketone body, β-hydroxybutyrate (BHB), which may serve as an alternative fuel source in its own right without a strict dietary regime.ObjectiveWe hypothesized that chronic administration of BHB replicates the therapeutic effects of ketogenic diet in an acute NMDA receptor hypofunction model of schizophrenia in mice.MethodsC57Bl/6 mice were either treated with acute doses of 2 mmol/kg, 10 mmol/kg, or 20 mmol/kg BHB or received daily intraperitoneal injections of 2 mmol/kg BHB or saline for 3 weeks. Behavioural testing assessed the effect of acute challenge with 0.2 mg/kg MK-801 or saline on open field behaviour, social interaction, and prepulse inhibition of startle (PPI).ResultsAcute BHB administration dose-dependently increased BHB plasma levels, whereas the 2 mmol/kg dose increased plasma glucose levels. The highest acute dose of BHB supressed spontaneous locomotor activity, MK-801-induced locomotor hyperactivity and MK-801-induced disruption of PPI. Chronic BHB treatment normalized MK-801-induced hyperlocomotion, reduction of sociability, and disruption of PPI.ConclusionIn conclusion, BHB may present a novel treatment option for patients with schizophrenia by providing an alternative fuel source to normalize impaired glucose metabolism in the brain.
Journal Article