Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
79
result(s) for
"MKK3"
Sort by:
Insights of Crosstalk between p53 Protein and the MKK3/MKK6/p38 MAPK Signaling Pathway in Cancer
2018
TP53 is universally recognized as a pivotal protein in cell-cycle fate and apoptotic induction and, unsurprisingly, it is one of the most commonly hijacked control mechanisms in cancer. Recently, the kinase MKK3 emerged as a potential therapeutic target in different types of solid tumor being linked to mutant p53 gain-of-function. In this review, we summarize the delicate relationship among p53 mutational status, MKK3/MKK6 and the downstream activated master kinase p38MAPK, dissecting a finely-tuned crosstalk, in a potentially cell-context dependent scenario that urges towards a deeper characterization of the different molecular players involved in this signaling cascade and their interactions.
Journal Article
Receptor for advanced glycation end products aggravates cognitive deficits in type 2 diabetes through binding of C‐terminal AAs 2‐5 to mitogen‐activated protein kinase kinase 3 (MKK3) and facilitation of MEKK3‐MKK3‐p38 module assembly
by
Gan, Tian
,
Song, Yuan‐Jian
,
Zhu, Yan‐Dong
in
Advanced glycosylation end products
,
Animals
,
Antibodies
2022
In this study, we explored the precise mechanisms underlying the receptor for advanced glycation end products (RAGE)‐mediated neuronal loss and behavioral dysfunction induced by hyperglycemia. We used immunoprecipitation (IP) and GST pull‐down assays to assess the interaction between RAGE and mitogen‐activated protein kinase kinase 3 (MKK3). Then, we investigated the effect of specific mutation of RAGE on plasticity at hippocampal synapses and behavioral deficits in db/db mice through electrophysiological recordings, morphological assays, and behavioral tests. We discovered that RAGE binds MKK3 and that this binding is required for assembly of the MEKK3‐MKK3‐p38 signaling module. Mechanistically, we found that activation of p38 mitogen‐activated protein kinase (MAPK)/NF‐κB signaling depends on mediation of the RAGE‐MKK3 interaction by C‐terminal RAGE (ctRAGE) amino acids (AAs) 2‐5. We found that ctRAGE R2A‐K3A‐R4A‐Q5A mutation suppressed neuronal damage, improved synaptic plasticity, and alleviated behavioral deficits in diabetic mice by disrupting the RAGE‐MKK3 conjugation. High glucose induces direct binding of RAGE and MKK3 via ctRAGE AAs 2‐5, which leads to assembly of the MEKK3‐MKK3‐p38 signaling module and subsequent activation of the p38MAPK/NF‐κB pathway, and ultimately results in diabetic encephalopathy (DE). Our study identifies the precise molecular mechanism by which RAGE modulates the p38MAPK pathway in DE: Direct binding of ctRAGE AAs 2‐5 to MKK3 promotes assembly of the MEKK3‐MKK3‐p38 signaling module, which is critical for activation of the p38MAPK/NF‐κB pathway, ultimately exacerbating the development and degree of DE.
Journal Article
High expression of MKK3 is associated with worse clinical outcomes in African American breast cancer patients
by
Cooper, Lee A. D.
,
Ivanov, Andrey A.
,
Amgad, Mohamed
in
African American women
,
African Americans
,
Biomedical and Life Sciences
2020
Background
African American women experience a twofold higher incidence of triple-negative breast cancer (TNBC) and are 40% more likely to die from breast cancer than women of other ethnicities. However, the molecular bases for the survival disparity in breast cancer remain unclear, and no race-specific therapeutic targets have been proposed. To address this knowledge gap, we performed a systematic analysis of the relationship between gene mRNA expression and clinical outcomes determined for The Cancer Genome Atlas (TCGA) breast cancer patient cohort.
Methods
The systematic differential analysis of mRNA expression integrated with the analysis of clinical outcomes was performed for 1055 samples from the breast invasive carcinoma TCGA PanCancer cohorts. A deep learning fully-convolutional model was used to determine the association between gene expression and tumor features based on breast cancer patient histopathological images.
Results
We found that more than 30% of all protein-coding genes are differentially expressed in White and African American breast cancer patients. We have determined a set of 32 genes whose overexpression in African American patients strongly correlates with decreased survival of African American but not White breast cancer patients. Among those genes, the overexpression of mitogen-activated protein kinase kinase 3 (MKK3) has one of the most dramatic and race-specific negative impacts on the survival of African American patients, specifically with triple-negative breast cancer. We found that MKK3 can promote the TNBC tumorigenesis in African American patients in part by activating of the epithelial-to-mesenchymal transition induced by master regulator MYC.
Conclusions
The poor clinical outcomes in African American women with breast cancer can be associated with the abnormal elevation of individual gene expression. Such genes, including those identified and prioritized in this study, could represent new targets for therapeutic intervention. A strong correlation between MKK3 overexpression, activation of its binding partner and major oncogene MYC, and worsened clinical outcomes suggests the MKK3-MYC protein–protein interaction as a new promising target to reduce racial disparity in breast cancer survival.
Journal Article
Incremental load training improves renal fibrosis by regulating the TGF-β1/TAK1/MKK3/p38MAPK signaling pathway and inducing the activation of autophagy in aged mice
2019
Recent studies have confirmed that kidney tissue fibrosis is closely linked to the natural aging of organs. One of its major characteristics is the reduction of autophagic activity. However, to date, few studies have assessed whether incremental load training is able to improve the occurrence of renal fibrosis caused by natural aging and the underlying mechanisms. In the present study involving male C57/BL mice, an elderly exercise group (OY group) was subjected to progressive load-increasing rotary-bar training (5 days/week, lasting for 6 weeks), with an elderly control group (OC group) and a young control group (YC group) used as controls. Renal fibrosis and autophagy-associated indicators were assessed by Masson's staining, reverse transcription-quantitative PCR analysis, western blotting, immunofluorescence and transmission electron microscopy. The results suggested that collagen deposition in the basal part of the renal tubular epithelium and glomeruli in the OY group was significantly lower than that in the OC group. In the OC group, the protein expression levels of E-cadherin, Beclin 1 and light chain 3 were significantly decreased, and increases in α-smooth muscle actin-positive signals were observed in the glomerular matrix and renal capsule wall. Furthermore, the expression of transforming growth factor (TGF)-β1 and its downstream signaling molecules TGF-β-activated kinase 1 (TAK1), mitogen-activated protein kinase (MAPK) kinase (MKK3) and p38MAPK were downregulated following training. The present study confirmed that incremental load training may improve renal fibrosis in aged mice by regulating the TGF-β1/TAK1/MMK3/p38MAPK signaling pathway and inducing the activation of autophagy to reduce the synthesis of extracellular matrix and delay the epithelial-mesenchymal transition. The present study provides a novel experimental basis for the intervention of incremental load training to prevent senile renal fibrosis.
Journal Article
MKK3 depletion attenuates intestinal injury after traumatic hemorrhagic shock by restoring mitochondrial function
by
Kuai, Xiangyu
,
Deng, Juxin
,
Wang, Zhenjie
in
Animal Anatomy
,
Animal Biochemistry
,
Animal models
2024
Background
Traumatic hemorrhagic shock (THS) is a complex pathophysiological process resulting in multiple organ failure. Intestinal barrier dysfunction is one of the mechanisms implicated in multiple organ failure. The present study aimed to explore the regulatory role of mitogen-activated protein kinase kinase 3 (MKK3) in THS-induced intestinal injury and to elucidate its potential mechanism.
Methods
Rats were subjected to trauma and hemorrhage to establish a THS animal model. MKK3-targeted lentiviral vectors were injected via the tail vein 72 h before modeling. Twelve hours post-modeling, the mean arterial pressure (MAP) and heart rate (HR) were monitored, and histological injury to the intestine was assessed via H&E staining and transmission electron microscopy. Mitochondrial function and mitochondrial reactive oxygen species (ROS) were evaluated. IEC-6 cells were exposed to hypoxia to mimic intestinal injury following THS in vitro.
Results
MKK3 deficiency alleviated intestinal injury and restored mitochondrial function in intestinal tissues from THS-induced rats and hypoxia-treated IEC-6 cells. In addition, MKK3 deficiency promoted Sirt1/PGC-1α-mediated mitochondrial biogenesis and restricted Pink1/Parkin-mediated mitophagy in the injured intestine and IEC-6 cells. Furthermore, the protective effect of MKK3 knockdown against hypoxia-induced mitochondrial damage was strengthened upon simultaneous LC3B/Pink1/Parkin knockdown or weakened upon simultaneous Sirt1 knockdown.
Conclusion
MKK3 deficiency protected against intestinal injury induced by THS by promoting mitochondrial biogenesis and restricting excessive mitophagy.
Journal Article
Dissection of the MKK3 Functions in Human Cancer: A Double-Edged Sword?
2022
The role played by MKK3 in human cancer is controversial. MKK3 is an evolutionarily conserved protein kinase that activates in response to a variety of stimuli. Phosphorylates, specifically the p38MAPK family proteins, contribute to the regulation of a plethora of cellular processes such as proliferation, differentiation, apoptosis, invasion, and cell migration. Genes in carcinogenesis are classified as oncogenes and tumor suppressors; however, a clear distinction is not always easily made as it depends on the cell context and tissue specificity. The aim of this study is the examination of the potential contribution of MKK3 in cancer through a systematic analysis of the recent literature. The overall results reveal a complex scenario of MKK3′s involvement in cancer. The oncogenic functions of MKK3 were univocally documented in several solid tumors, such as colorectal, prostate cancer, and melanoma, while its tumor-suppressing functions were described in glioblastoma and gastric cancer. Furthermore, a dual role of MKK3 as an oncogene as well as tumor a suppressor has been described in breast, cervical, ovarian, liver, esophageal, and lung cancer. However, overall, more evidence points to its role as an oncogene in these diseases. This review indicates that the oncogenic and tumor-suppressing roles of MKK3 are strictly dependent on the tumor type and further suggests that MKK3 could represent an efficient putative molecular target that requires contextualization within a specific tumor type in order to adequately evaluate its potential effectiveness in designing novel anticancer therapies.
Journal Article
The Arabidopsis Mitogen-Activated Protein Kinase Kinase Kinase 20 (MKKK20) Acts Upstream of MKK3 and MPK18 in Two Separate Signaling Pathways Involved in Root Microtubule Functions
2017
Mitogen-activated protein kinase (MAPK) signaling networks represent important means of signal transduction in plants and other eukaryotes, controlling intracellular signaling by linking perception of environmental or developmental cues to downstream targets. In the
MEKK subfamily, the MKKK19, 20, and 21 form a highly supported clade with the Solanaceous Fertilization-Related Kinases. In
, little is known about this group, except for MKKK20, which is involved in osmotic stress. Using a directed MKKK-MKK yeast two-hybrid (Y2H) screen, MKKK20 was found to interact only with MKK3, while a MKKK20 large-scale Y2H screen retrieved MPK18 as a direct interactant.
phosphorylation assays showed that MKKK20 phosphorylates both MKK3 and MPK18. However, when all three kinases are combined, no synergistic effect is observed on MPK18 phosphorylation, suggesting a direct access to MPK18, consistent with the absence of interaction between MKK3 and MPK18 in protein-protein interaction assays. Since
mutant plants were previously shown to be defective in microtubule-related functions, phenotypes of
single and
double mutants were investigated to determine if
acts upstream of
. This was the case, as
root length was shorter than WT in media containing microtubule-disrupting drugs as previously observed for
plants. Surprisingly,
plants were also similarly affected, suggesting the presence of two non-complementary pathways involved in
cortical microtubule function, the first including MKKK20, MKK3 and an unknown MPK; the second, a non-canonical MAPK cascade made of MKKK20 and MPK18 that bypasses the need for an MKK intermediate.
Journal Article
The MKK3 module integrates nitrate and light signals to modulate secondary dormancy in Arabidopsis thaliana
2024
Seed dormancy corresponds to a reversible blockage of germination. Primary dormancy is established during seed maturation while secondary dormancy is set up on the dispersed seed, following an exposure to unfavourable factors. Both dormancies are relieved in response to environmental factors, such as light, nitrate and coldness. QTL analyses for preharvest sprouting identified MKK3 kinase in cereals as a player in dormancy control. Here, we showed that MKK3 also plays a role in secondary dormancy in Arabidopsis within a signalling module composed of MAP3K13/14/19/20, MKK3 and clade-C MAPKs. Seeds impaired in this module acquired heat-induced secondary dormancy more rapidly than WT seeds and this dormancy is less sensitive to nitrate, a signal able to release dormancy. We also demonstrated that MPK7 was strongly activated in the seed during dormancy release, especially in response to light and nitrate. This activation was greatly reduced in map3k13/14/19/20 and mkk3 mutants. Finally, we showed that the module was not regulated, and apparently did not regulate, the genes controlling ABA/GA hormone balance, one of the crucial mechanisms of seed dormancy control. Overall, our work identified a whole new MAPK module controlling seed germination and enlarged the panel of functions of the MKK3-related modules in plants.Competing Interest StatementThe authors have declared no competing interest.
Telomerase inhibition with a novel G-quadruplex-interactive agent, telomestatin: in vitro and in vivo studies in acute leukemia
2006
The telomerase complex is responsible for telomere maintenance and represents a promising neoplasia therapeutic target. Recently, we have demonstrated that treatment with a G-quadruplex-interactive agent, telomestatin reproducibly inhibited telomerase activity in the BCR-ABL-positive leukemic cell lines. In the present study, we investigated the mechanisms of apoptosis induced by telomerase inhibition in acute leukemia. We have found the activation of caspase-3 and poly-(ADP-ribose) polymerase in telomestatin-treated U937 cells (PD20) and dominant-negative DN-hTERT-expressing U937 cells (PD25). Activation of p38 mitogen-activated protein (MAP) kinase and MKK3/6 was also found in telomestatin-treated U937 cells (PD20) and dominant-negative DN-hTERT-expressing U937 cells (PD25); however, activation of JNK and ASK1 was not detected in these cells. To examine the effect of p38 MAP kinase inhibition on growth properties and apoptosis in telomerase-inhibited cells, we cultured DN-hTERT-expressing U937 cells with or without SB203580. Dominant-negative-hTERT-expressing U937 cells stopped proliferation on PD25; however, a significant increase in growth rate was observed in the presence of SB203580. Treatment of SB203580 also reduced the induction of apoptosis in DN-hTERT-expressing U937 cells (PD25). These results suggest that p38 MAP kinase has a critical role for the induction of apoptosis in telomerase-inhibited leukemia cells. Further, we evaluated the effect of telomestatin on the growth of U937 cells in xenograft mouse model. Systemic intraperitoneal administration of telomestatin in U937 xenografts decreased tumor telomerase levels and reduced tumor volumes. Tumor tissue from telomestatin-treated animals exhibited marked apoptosis. None of the mice treated with telomestatin displayed any signs of toxicity. Taken together, these results lay the foundations for a program of drug development to achieve the dual aims of efficacy and selectivity
in vivo
.
Journal Article
MKK6 deficiency promotes cardiac dysfunction through MKK3-p38γ/δ-mTOR hyperactivation
by
Montalvo-Romeral, Valle
,
Mora, Alfonso
,
Rodríguez, Elena
in
aging
,
Animals
,
cardiac hypertrophy
2022
Stress-activated p38 kinases control a plethora of functions, and their dysregulation has been linked to the development of steatosis, obesity, immune disorders, and cancer. Therefore, they have been identified as potential targets for novel therapeutic strategies. There are four p38 family members (p38α, p38β, p38γ, and p38δ) that are activated by MKK3 and MKK6. Here, we demonstrate that lack of MKK6 reduces the lifespan in mice. Longitudinal study of cardiac function in MKK6 KO mice showed that young mice develop cardiac hypertrophy which progresses to cardiac dilatation and fibrosis with age. Mechanistically, lack of MKK6 blunts p38α activation while causing MKK3-p38γ/δ hyperphosphorylation and increased mammalian target of rapamycin (mTOR) signaling, resulting in cardiac hypertrophy. Cardiac hypertrophy in MKK6 KO mice is reverted by knocking out either p38γ or p38δ or by inhibiting the mTOR pathway with rapamycin. In conclusion, we have identified a key role for the MKK3/6-p38γ/δ pathway in the development of cardiac hypertrophy, which has important implications for the clinical use of p38α inhibitors in the long-term treatment since they might result in cardiotoxicity. The human heart can increase its size to supply more blood to the body’s organs. This process, called hypertrophy, can happen during exercise or be caused by medical conditions, such as high blood pressure or inherited genetic diseases. If hypertrophy is continually driven by illness, this can cause the heart to fail and no longer be able to properly pump blood around the body. For hypertrophy to happen, several molecular changes occur in the cells responsible for contracting the heart, including activation of the p38 pathway. Within this pathway is a p38 enzyme as well as a series of other proteins which are sequentially turned on in response to stress, such as inflammatory molecules or mechanical forces that alter the cell’s shape. There are different types of p38 enzyme which have been linked to other diseases, making them a promising target for drug development. However, clinical trials blocking individual members of the p38 family have had disappointing results. An alternative approach is to target other proteins involved in the p38 pathway, such as MKK6, but it is not known what effect this might have. To investigate, Romero-Becerra et al. genetically modified mice to not have any MKK6 protein. As a result, these mice had a shorter lifespan, with hypertrophy developing at a young age that led to heart problems. Romero-Becerra et al. used different mice models to understand why this happened, showing that a lack of MKK6 reduces the activity of a specific member of the p38 family called p38α. However, this blockage boosted a different branch of the pathway which involved two other p38 proteins, p38γ and p38δ. This, in turn, triggered another key pathway called mTOR which also promotes hypertrophy of the heart. These results suggest that drugs blocking MKK6 and p38α could lead to side effects that cause further harm to the heart. A more promising approach for treating hypertrophic heart conditions could be to inhibit p38γ and/or p38δ. However, before this can be fully explored, further work is needed to generate compounds that specifically target these proteins.
Journal Article