Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,031
result(s) for
"MLP"
Sort by:
An efficient multilayer RBF neural network and its application to regression problems
by
Sekar, Vinothkumar
,
Jiang, Qinghua
,
Zhu, Lailai
in
Approximation
,
Artificial Intelligence
,
Computational Biology/Bioinformatics
2022
By combining multilayer perceptrons (MLPs) and radial basis function neural networks (RBF-NNs), an efficient multilayer RBF network is proposed in this work for regression problems. As an extension to the existing multilayer RBF network (RBF-MLP-I), the new multilayer RBF network (RBF-MLP-II) first nonlinearly transforms the multi-dimensional input data by adopting a set of multivariate basis functions. Then, linear weighted sums of these basis functions, i.e., the RBF approximations, are computed in the first hidden layer and used as the features of this layer. Subsequently, in the following hidden layers, each feature of the preceding hidden layer is fed into a univariate RBF characterized by the trainable scalar center and width, and then, RBF approximations are also applied to these basis functions. Finally, the features of the last hidden layer are linearly transformed to approximate the target output data. RBF-MLP-II reduces the number of parameters in basis functions and thus the network complexity of RBF-MLP-I. Verified by four regression problems, it is demonstrated that the proposed RBF-MLP-II exhibits the best approximation accuracy and fastest training convergence compared to conventional MLPs, RBF-NNs, and RBF-MLP-I.
Journal Article
CO2 Emission and Energy Consumption Estimates in the COPERT Model—Conclusions from Chassis Dynamometer Tests and SANN Artificial Neural Network Models and Their Meaning for Transport Management
by
Zimakowska-Laskowska, Magdalena
,
Kulesza, Ewa
,
Orynycz, Olga
in
Artificial intelligence
,
artificial neural networks (MLP
,
CO2 emission
2025
This article aimed to assess the accuracy of the COPERT model in predicting CO2 emissions and energy consumption in real operating conditions, represented by the WLTP homologation tests. Experimental data obtained for a Euro 6 vehicle were compared with the values estimated by the COPERT model, assuming identical speed conditions. MLP and SANN artificial neural networks were also used to create a model describing the complex relationships between emissions, speed, and energy consumption. The results indicate an apparent overestimation of CO2 and energy consumption values by the COPERT model, especially in the low-speed range typical of urban traffic. The minimum energy consumption values were observed at speeds of 50–70 km/h, indicating the existence of an optimal drive system operation zone. The neural models showed high efficiency in predicting the tested parameters—the best results were obtained for the MLP 6-10-1 architecture, whose correlation coefficient exceeded 0.98 in the validation set. The paper highlights the need to calibrate the COPERT model using local experimental data and integrate artificial intelligence methods in modern emission inventories.
Journal Article
Shuffled Frog Leaping Algorithm and Wind-Driven Optimization Technique Modified with Multilayer Perceptron
2020
The prediction aptitude of an artificial neural network (ANN) is improved by incorporating two novel metaheuristic techniques, namely, the shuffled frog leaping algorithm (SFLA) and wind-driven optimization (WDO), for the purpose of soil shear strength (simply called shear strength) simulation. Soil information of the Trung Luong national expressway project (Vietnam) including depth of the sample (m), percentage of sand, percentage of silt, percentage of clay, percentage of moisture content, wet density (kg/m3), liquid limit (%), plastic limit (%), plastic index (%), liquidity index, and the shear strength (kPa) was collocated through a field survey. After constructing the hybrid ensembles of SFLA–ANN and WDO–ANN, both models were optimized in terms of complexity using a population-based trial-and error-scheme. The learning quality of the ANN was compared with both improved versions to examine the effect of the used metaheuristic techniques. In this phase, the training error dropped by 14.25% and 28.25% by applying the SFLA and WDO, respectively. This reflects a significant improvement in pattern recognition ability of the ANN. The results of the testing data revealed 25.57% and 39.25% decreases in generalization (i.e., testing) error. Moreover, the correlation between the measured and predicted shear strengths (i.e., the coefficient of determination) rose from 0.82 to 0.89 and 0.92, which indicates the efficiency of both SFLA and WDO metaheuristic techniques in optimizing the ANN.
Journal Article
How effective is the Grey Wolf optimizer in training multi-layer perceptrons
2015
This paper employs the recently proposed Grey Wolf Optimizer (GWO) for training Multi-Layer Perceptron (MLP) for the first time. Eight standard datasets including five classification and three function-approximation datasets are utilized to benchmark the performance of the proposed method. For verification, the results are compared with some of the most well-known evolutionary trainers: Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Ant Colony Optimization (ACO), Evolution Strategy (ES), and Population-based Incremental Learning (PBIL). The statistical results prove the GWO algorithm is able to provide very competitive results in terms of improved local optima avoidance. The results also demonstrate a high level of accuracy in classification and approximation of the proposed trainer.
Journal Article
ECG Cardiac arrhythmias Classification using DWT, ICA and MLP Neural Networks
2021
Recognizing ECG cardiac arrhythmia automatically is an essential task for diagnosing the abnormalities of cardiac muscle. The proposal of few algorithms has been made for classifying the ECG cardiac arrhythmias, however the system of classification efficiency is determined on the basis of its prediction and diagnosis accuracy. Hence, in this study the proposal of an efficient system has been made for classifying the ECG cardiac arrhythmia as an expertise. Discrete Wavelet Transform (DWT) is being utilized for the preprocessing mechanism of ECG signal, Independent Component Analysis (ICA) is being utilized for dimensionality reduction and Feature Extraction process of ECG signal and Multi-Layer Perceptron (MLP) neural network is being utilized for performing the task of classification. As an outcome of classification, the results have been acquired on categorizing Normal Beats under the class of Non-Ectopic beat, Atrial Premature Beat under the class of Supra-Ventricular ectopic beat and Ventricular Escape beat under the class of Ventricular ectopic beat on the basis of standardization given by ANSI/AAMI EC57: 1998. For the acquisition of ECG signal, MIT-BIH physionet arrhythmia database is being utilized in this study added to that its being utilized for training process and testing process of the classifier on the basis of MLP-NN. The results obtained from the simulation has been inferred that the accuracy of classification of the proposed algorithm is 96.50% on utilizing 10 files inclusive of normal beats, Atrial Premature Beat and Ventricular Escape beat.
Journal Article
Optimizing connection weights in neural networks using the whale optimization algorithm
by
Aljarah, Ibrahim
,
Faris, Hossam
,
Mirjalili, Seyedali
in
Artificial Intelligence
,
Artificial neural networks
,
Back propagation
2018
The learning process of artificial neural networks is considered as one of the most difficult challenges in machine learning and has attracted many researchers recently. The main difficulty of training a neural network is the nonlinear nature and the unknown best set of main controlling parameters (weights and biases). The main disadvantages of the conventional training algorithms are local optima stagnation and slow convergence speed. This makes stochastic optimization algorithm reliable alternative to alleviate these drawbacks. This work proposes a new training algorithm based on the recently proposed whale optimization algorithm (WOA). It has been proved that this algorithm is able to solve a wide range of optimization problems and outperform the current algorithms. This motivated our attempts to benchmark its performance in training feedforward neural networks. For the first time in the literature, a set of 20 datasets with different levels of difficulty are chosen to test the proposed WOA-based trainer. The results are verified by comparisons with back-propagation algorithm and six evolutionary techniques. The qualitative and quantitative results prove that the proposed trainer is able to outperform the current algorithms on the majority of datasets in terms of both local optima avoidance and convergence speed.
Journal Article
Greylag goose optimization and multilayer perceptron for enhancing lung cancer classification
2024
Lung cancer is an important global health problem, and it is defined by abnormal growth of the cells in the tissues of the lung, mostly leading to significant morbidity and mortality. Its timely identification and correct staging are very important for proper therapy and prognosis. Different computational methods have been used to enhance the precision of lung cancer classification, among which optimization algorithms such as Greylag Goose Optimization (GGO) are employed. These algorithms have the purpose of improving the performance of machine learning models that are presented with a large amount of complex data, selecting the most important features. As per lung cancer classification, data preparation is one of the most important steps, which contains the operations of scaling, normalization, and handling gap factor to ensure reasonable and reliable input data. In this domain, the use of GGO includes refining feature selection, which mainly focuses on enhancing the classification accuracy compared to other binary format optimization algorithms, like bSC, bMVO, bPSO, bWOA, bGWO, and bFOA. The efficiency of the bGGO algorithm in choosing the optimal features for improved classification accuracy is an indicator of the possible application of this method in the field of lung cancer diagnosis. The GGO achieved the highest accuracy with MLP model performance at 98.4%. The feature selection and classification results were assessed using statistical analysis, which utilized the Wilcoxon signed-rank test and ANOVA. The results were also accompanied by a set of graphical illustrations that ensured the adequacy and efficiency of the adopted hybrid method (GGO + MLP).
Journal Article
COVID-19 cough classification using machine learning and global smartphone recordings
by
Warren, Robin
,
Pahar, Madhurananda
,
Klopper, Marisa
in
Artificial neural networks
,
Classification
,
Classifiers
2021
We present a machine learning based COVID-19 cough classifier which can discriminate COVID-19 positive coughs from both COVID-19 negative and healthy coughs recorded on a smartphone. This type of screening is non-contact, easy to apply, and can reduce the workload in testing centres as well as limit transmission by recommending early self-isolation to those who have a cough suggestive of COVID-19. The datasets used in this study include subjects from all six continents and contain both forced and natural coughs, indicating that the approach is widely applicable. The publicly available Coswara dataset contains 92 COVID-19 positive and 1079 healthy subjects, while the second smaller dataset was collected mostly in South Africa and contains 18 COVID-19 positive and 26 COVID-19 negative subjects who have undergone a SARS-CoV laboratory test. Both datasets indicate that COVID-19 positive coughs are 15%–20% shorter than non-COVID coughs. Dataset skew was addressed by applying the synthetic minority oversampling technique (SMOTE). A leave-p-out cross-validation scheme was used to train and evaluate seven machine learning classifiers: logistic regression (LR), k-nearest neighbour (KNN), support vector machine (SVM), multilayer perceptron (MLP), convolutional neural network (CNN), long short-term memory (LSTM) and a residual-based neural network architecture (Resnet50). Our results show that although all classifiers were able to identify COVID-19 coughs, the best performance was exhibited by the Resnet50 classifier, which was best able to discriminate between the COVID-19 positive and the healthy coughs with an area under the ROC curve (AUC) of 0.98. An LSTM classifier was best able to discriminate between the COVID-19 positive and COVID-19 negative coughs, with an AUC of 0.94 after selecting the best 13 features from a sequential forward selection (SFS). Since this type of cough audio classification is cost-effective and easy to deploy, it is potentially a useful and viable means of non-contact COVID-19 screening.
•A machine learning based COVID-19 cough classifier has been developed.•This classifier achieves the highest AUC of 0.98 from a residual based architecture.•Cough audio recordings are collected from all six continents of the globe.•COVID-19 positive coughs are 15% to 20% shorter than non-COVID coughs.•A special feature extraction technique preserves end-to-end time-domain patterns.
Journal Article
A machine learning forecasting model for COVID-19 pandemic in India
2020
Coronavirus disease (COVID-19) is an inflammation disease from a new virus. The disease causes respiratory ailment (like influenza) with manifestations, for example, cold, cough and fever, and in progressively serious cases, the problem in breathing. COVID-2019 has been perceived as a worldwide pandemic and a few examinations are being led utilizing different numerical models to anticipate the likely advancement of this pestilence. These numerical models dependent on different factors and investigations are dependent upon potential inclination. Here, we presented a model that could be useful to predict the spread of COVID-2019. We have performed linear regression, Multilayer perceptron and Vector autoregression method for desire on the COVID-19 Kaggle data to anticipate the epidemiological example of the ailment and pace of COVID-2019 cases in India. Anticipated the potential patterns of COVID-19 effects in India dependent on data gathered from Kaggle. With the common data about confirmed, death and recovered cases across India for over the time length helps in anticipating and estimating the not so distant future. For extra assessment or future perspective, case definition and data combination must be kept up persistently.
Journal Article