Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
121 result(s) for "MQTT protocol"
Sort by:
A New Decentralized Control Strategy of Microgrids in the Internet of Energy Paradigm
The Energy Internet paradigm is the evolution of the Internet of Things concept in the power system. Microgrids (MGs), as the essential element in an Energy Internet, are expected to be controlled in a corporative and flexible manner. This paper proposes a novel decentralized robust control strategy for multi-agent systems (MASs) governed MGs in future Energy Internet. The proposed controller is based on a consensus algorithm applied with the connected distributed generators (DGs) in the MGs in the energy internet paradigm. The proposed controller’s objectives are the frequency/voltage regulation and proportional reactive/active power-sharing for the hybrid DGs connected MGs. A proposed two-level communication system is implemented to explain the data exchange between the MG system and the cloud server. The local communication level utilizes the transmission control protocol (TCP)/ internet protocol (IP) and the message queuing telemetry transport (MQTT) is used as the protocol for the global communication level. The proposed control strategy has been verified using a hypothetical hybrid DGs connected MG such as photovoltaic or wind turbines in MATLAB Simulink environment. Several scenarios based on the system load types are implemented using residential buildings and small commercial outlets. The simulation results have verified the feasibility and effectiveness of the introduced strategy for the MGs’ various operating conditions.
Secure Enhancement for MQTT Protocol Using Distributed Machine Learning Framework
The Message Queuing Telemetry Transport (MQTT) protocol stands out as one of the foremost and widely recognized messaging protocols in the field. It is often used to transfer and manage data between devices and is extensively employed for applications ranging from smart homes and industrial automation to healthcare and transportation systems. However, it lacks built-in security features, thereby making it vulnerable to many types of attacks such as man-in-the-middle (MitM), buffer overflow, pre-shared key, brute force authentication, malformed data, distributed denial-of-service (DDoS) attacks, and MQTT publish flood attacks. Traditional methods for detecting MQTT attacks, such as deep neural networks (DNNs), k-nearest neighbor (KNN), linear discriminant analysis (LDA), and fuzzy logic, may exist. The increasing prevalence of device connectivity, sensor usage, and environmental scalability become the most challenging aspects that novel detection approaches need to address. This paper presents a new solution that leverages an H2O-based distributed machine learning (ML) framework to improve the security of the MQTT protocol in networks, particularly in IoT environments. The proposed approach leverages the strengths of the H2O algorithm and architecture to enable real-time monitoring and distributed detection and classification of anomalous behavior (deviations from expected activity patterns). By harnessing H2O’s algorithms, the identification and timely mitigation of potential security threats are achieved. Various H2O algorithms, including random forests, generalized linear models (GLMs), gradient boosting machine (GBM), XGBoost, and the deep learning (DL) algorithm, have been assessed to determine the most reliable algorithm in terms of detection performance. This study encompasses the development of the proposed algorithm, including implementation details and evaluation results. To assess the proposed model, various evaluation metrics such as mean squared error (MSE), root-mean-square error (RMSE), mean per class error (MCE), and log loss are employed. The results obtained indicate that the H2OXGBoost algorithm outperforms other H2O models in terms of accuracy. This research contributes to the advancement of secure IoT networks and offers a practical approach to enhancing the security of MQTT communication channels through distributed detection and classification techniques.
Preventing MQTT Vulnerabilities Using IoT-Enabled Intrusion Detection System
The advancement in the domain of IoT accelerated the development of new communication technologies such as the Message Queuing Telemetry Transport (MQTT) protocol. Although MQTT servers/brokers are considered the main component of all MQTT-based IoT applications, their openness makes them vulnerable to potential cyber-attacks such as DoS, DDoS, or buffer overflow. As a result of this, an efficient intrusion detection system for MQTT-based applications is still a missing piece of the IoT security context. Unfortunately, existing IDSs do not provide IoT communication protocol support such as MQTT or CoAP to validate crafted or malformed packets for protecting the protocol implementation vulnerabilities of IoT devices. In this paper, we have designed and developed an MQTT parsing engine that can be integrated with network-based IDS as an initial layer for extensive checking against IoT protocol vulnerabilities and improper usage through a rigorous validation of packet fields during the packet-parsing stage. In addition, we evaluate the performance of the proposed solution across different reported vulnerabilities. The experimental results demonstrate the effectiveness of the proposed solution for detecting and preventing the exploitation of vulnerabilities on IoT protocols.
A Novel Robust Smart Energy Management and Demand Reduction for Smart Homes Based on Internet of Energy
In residential energy management (REM), Time of Use (ToU) of devices scheduling based on user-defined preferences is an essential task performed by the home energy management controller. This paper devised a robust REM technique capable of monitoring and controlling residential loads within a smart home. In this paper, a new distributed multi-agent framework based on the cloud layer computing architecture is developed for real-time microgrid economic dispatch and monitoring. In this paper the grey wolf optimizer (GWO), artificial bee colony (ABC) optimization algorithm-based Time of Use (ToU) pricing model is proposed to define the rates for shoulder-peak and on-peak hours. The results illustrate the effectiveness of the proposed the grey wolf optimizer (GWO), artificial bee colony (ABC) optimization algorithm based ToU pricing scheme. A Raspberry Pi3 based model of a well-known test grid topology is modified to support real-time communication with open-source IoE platform Node-Red used for cloud computing. Two levels communication system connects microgrid system, implemented in Raspberry Pi3, to cloud server. The local communication level utilizes IP/TCP and MQTT is used as a protocol for global communication level. The results demonstrate and validate the effectiveness of the proposed technique, as well as the capability to track the changes of load with the interactions in real-time and the fast convergence rate.
Wide-Area Visual Monitoring System Based on NB-IoT
Effective detection of unexpected events in wide-area surveillance remains a critical challenge in the development of intelligent monitoring systems. Recent advancements in Narrowband Internet of Things (NB-IoT) and 5G technologies provide a robust foundation to address this issue. This study presents an integrated architecture for real-time event detection and response. The system utilizes the Constrained Application Protocol (CoAP) to transmit encapsulated JPEG images from NB-IoT modules to an Internet of Things (IoT) server. Upon receipt, images are decoded, processed, and archived in a centralized database. Subsequently, image data are transmitted to client applications via WebSocket, leveraging the Message Queuing Telemetry Transport (MQTT) protocol. By performing temporal image comparison, the system identifies abnormal events within the monitored area. Once an anomaly is detected, a visual alert is generated and presented through an interactive interface. The test results show that the image recognition accuracy is consistently above 98%. This approach enables intelligent, scalable, and responsive wide-area surveillance reliably, overcoming the constraints of conventional isolated and passive monitoring systems.
Improved MQTT Secure Transmission Flags in Smart Homes
In the current era of smart homes and smart grids, complex technical systems that allow for the automation of domestic functions are rapidly growing and becoming more widely available. A wide range of technologies and software applications are now available for use in smart homes, and many of them are free to use. They allow for communication between home appliances and their users, as well as the automation, monitoring, and remote-control capabilities of home appliances themselves. Unfortunately, a lot of previous research ignored security issues involving the great attention to detail of the data in a transmission session within the devices in smart home architectures, which is why this study proposed smart grid secured transmission flags suitable for preventing every bit of data transmission in a smart home. Secure Message Queueing Transport Protocol (MQTT) in Internet of Things (IoT) Smart Homes protocols was utilized; an experimental testbed was designed with a prototype involving the process of a smart home system and the sequences of the data transmission. The evaluation of the proposed strategies has shown an improved bi-directional secure resource constraint strategy for the smart home within data packet transmission at 70 to 80 mbps over secure MQTT. A number of concerns, including technological barriers, difficulties, challenges, and future trends, as well as the role of users, have been presented in this study, among others.
ISAAF: an IoT security and attack prevention framework using AI-driven predictive analytics
The Internet of Things (IoT) is reshaping domains, such as healthcare, agriculture, and industry by enabling real-time connectivity among constrained devices. However, the lightweight Message Queuing Telemetry Transport (MQTT) protocol exposes these systems to severe cyber threats, including DoS, Bruteforce, Malformed, Flood, and Slowite attacks. While machine learning (ML) and deep learning (DL) models trained on simulated benchmarks, such as MQTTset, have shown promise, evaluation results indicate that these models achieved high accuracy in controlled environments but failed to generalize to real-world traffic. To address this limitation, MQTTEEB-D was introduced as a novel real-world intrusion dataset collected from an operational IoT testbed. Building on MQTTEEB-D, a layered and AI-driven security framework is introduced for real-time intrusion detection and automated mitigation. For instance, Decision Tree (DT) and Gated Recurrent Unit (GRU) accuracies, using MQTTset, dropped to 8% and 21% when tested on real data. However, after retraining both models on MQTTEEB-D, the results showed a noticeable improvement; DT reached 87% and GRU 86.5% accuracy. The framework was deployed and tested in real-sitting scenarios and experimental results demonstrated efficient attacks’ detection and mitigation with near-real-time responsiveness. Overall, the findings confirm that the proposed framework and its related services provide a scalable, deployable, and cross-domain security solution for real-world IoT applications.
Toward the Web of Industrial Things: A Publish-Subscribe Oriented Architecture for Data and Power Management
The foundation of an energy sustainable Web of Industrial Things (WoIT) is facing several open issues due to the constraints imposed by the involved devices, the technological heterogeneity and the complex interactions and, hence, communications patterns. Towards this goal, in this paper, a general framework inspired by the Publish-Subscribe principle have been proposed, in order to jointly optimize the service requirements and the network availability. In particular, in this paper we focus on a holistic design with the objective to manage power budget distribution, in order to support applications that extend the basic publish-and-subscribe scheme.The involved WoIT nodes functionalities, interfaces and hardware architectures have been designed, with a special focus on control protocols. The introduced integrated solution has been validated in scenarios minimising and possibly balancing the power consumption. The achieved results show an average improvement of 45% for the communications performance with the wireless power management.
IoT-Based Wireless System for Gait Kinetics Monitoring in Multi-Device Therapeutic Interventions
This study presents an IoT-based gait analysis system employing insole pressure sensors to assess gait kinetics. The system integrates piezoresistive sensors within a left foot insole, with data acquisition managed using an ESP32 board that communicates via Wi-Fi through an MQTT IoT framework. In this initial protocol study, we conducted a comparative analysis using the Zeno system, supported by PKMAS as the gold standard, to explore the correlation and agreement of data obtained from the insole system. Four volunteers (two males and two females, aged 24–28, without gait disorders) participated by walking along a 10 m Zeno system path, equipped with pressure sensors, while wearing the insole system. Vertical ground reaction force (vGRF) data were collected over four gait cycles. The preliminary results indicated a strong positive correlation (r = 0.87) between the insole and the reference system measurements. A Bland–Altman analysis further demonstrated a mean difference of approximately (0.011) between the two systems, suggesting a minimal yet significant bias. These findings suggest that piezoresistive sensors may offer a promising and cost-effective solution for gait disorder assessment and monitoring. However, operational factors such as high temperatures and sensor placement within the footwear can introduce noise or unwanted signal activation. The communication framework proved functional and reliable during this protocol, with plans for future expansion to multi-device applications. It is important to note that additional validation studies with larger sample sizes are required to confirm the system’s reliability and robustness for clinical and research applications.
Validation of High-Availability Model for Edge Devices and IIoT
Competitiveness in industry requires smooth, efficient, and high-quality operation. For some industrial applications or process control and monitoring applications, it is necessary to achieve high availability and reliability because, for example, the failure of availability in industrial production can have serious consequences for the operation and profitability of the company, as well as for the safety of employees and the surrounding environment. At present, many new technologies that use data obtained from various sensors for evaluation or decision-making require the minimization of data processing latency to meet the needs of real-time applications. Cloud/Fog and Edge computing technologies have been proposed to overcome latency issues and to increase computing power. However, industrial applications also require the high availability and reliability of devices and systems. The potential malfunction of Edge devices can cause a failure of applications, and the unavailability of Edge computing results can have a significant impact on manufacturing processes. Therefore, our article deals with the creation and validation of an enhanced Edge device model, which in contrast to the current solutions, is aimed not only at the integration of various sensors within manufacturing solutions, but also brings the required redundancy to enable the high availability of Edge devices. In the model, we use Edge computing, which performs the recording of sensed data from various types of sensors, synchronizes them, and makes them available for decision making by applications in the Cloud. We focus on creating a suitable Edge device model that works with the redundancy, by using either mirroring or duplexing via a secondary Edge device. This enables high Edge device availability and rapid system recovery in the event of a failure of the primary Edge device. The created model of high availability is based on the mirroring and duplexing of the Edge devices, which support two protocols: OPC UA and MQTT. The models were implemented in the Node-Red software, tested, and subsequently validated and compared to confirm the required recovery time and 100% redundancy of the Edge device. In the contrast to the currently available Edge solutions, our proposed extended model based on Edge mirroring is able to address most of the critical cases, where fast recovery is required, and no adjustments are needed for critical applications. The maturity level of Edge high availability can be further extended by applying Edge duplexing for process control.