Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
79
result(s) for
"MUC16"
Sort by:
A phase I clinical trial of adoptive T cell therapy using IL-12 secreting MUC-16(ecto) directed chimeric antigen receptors for recurrent ovarian cancer
by
Koneru, Mythili
,
O'Cearbhaill, Roisin
,
Pendharkar, Swati
in
CA-125 Antigen - immunology
,
Clinical Trials, Phase I as Topic - methods
,
Cytotoxicity, Immunologic
2015
Recurrent platinum-resistant ovarian cancer has no curative options, necessitating the development of novel treatments, including immunotherapy.
Patient-derived T cells can be genetically modified to express chimeric antigen receptors (CARs) specific to tumor-associated antigens in an HLA-independent manner, with promising preclinical results. MUC16(ecto) is highly expressed on most epithelial ovarian carcinomas but at low levels on normal tissues, offering an excellent immunotherapeutic target for this cancer. CAR T cells further modified to secrete IL-12 show enhanced cytotoxicity, persistence, and modulation of the tumor microenvironment.
We propose a dose escalation phase I clinical trial for patients with recurrent MUC-16(ecto+) ovarian cancer to test the safety of intravenous and intraperitoneal administration and the preliminary efficacy of autologous IL-12 secreting, MUC-16(ecto) CAR T cells containing a safety elimination gene.
This trial targets MUC-16(ecto), a novel and promising tumor-associated antigen. This will be the first time CAR T cells are injected intraperitoneally directly into the site of the tumor within the abdomen in humans. Furthermore, the ability of genetically modified cells to secrete IL-12 will potentially enhance CAR T cell persistence and modulate the tumor microenvironment. For safety purposes, an elimination gene has been incorporated into the CAR T cells to mitigate any on-target, off-tumor or other unforeseen toxicity.
Journal Article
MUC16 (CA125): tumor biomarker to cancer therapy, a work in progress
by
Gonzalez-Bosquet, Jesus
,
Heintz, Joseph
,
Kapur, Arvinder
in
Algorithms
,
Antibodies, Monoclonal - therapeutic use
,
Antigenic determinants
2014
Over three decades have passed since the first report on the expression of CA125 by ovarian tumors. Since that time our understanding of ovarian cancer biology has changed significantly to the point that these tumors are now classified based on molecular phenotype and not purely on histological attributes. However, CA125 continues to be, with the recent exception of HE4, the only clinically reliable diagnostic marker for ovarian cancer. Many large-scale clinical trials have been conducted or are underway to determine potential use of serum CA125 levels as a screening modality or to distinguish between benign and malignant pelvic masses. CA125 is a peptide epitope of a 3–5 million Da mucin, MUC16. Here we provide an in-depth review of the literature to highlight the importance of CA125 as a prognostic and diagnostic marker for ovarian cancer. We focus on the increasing body of literature describing the biological role of MUC16 in the progression and metastasis of ovarian tumors. Finally, we consider previous and on-going efforts to develop therapeutic approaches to eradicate ovarian tumors by targeting MUC16. Even though CA125 is a crucial marker for ovarian cancer, the exact structural definition of this antigen continues to be elusive. The importance of MUC16/CA125 in the diagnosis, progression and therapy of ovarian cancer warrants the need for in-depth research on the biochemistry and biology of this mucin. A renewed focus on MUC16 is likely to culminate in novel and more efficient strategies for the detection and treatment of ovarian cancer.
Journal Article
Dual targeting ovarian cancer by Muc16 CAR T cells secreting a bispecific T cell engager antibody for an intracellular tumor antigen WT1
2023
Epithelial ovarian cancer is the most lethal of gynecological cancers. The therapeutic efficacy of chimeric antigen receptor (CAR) T cell directed against single antigens is limited by the heterogeneous target antigen expression in epithelial ovarian tumors. To overcome this limitation, we describe an engineered cell with both dual targeting and orthogonal cytotoxic modalities directed against two tumor antigens that are highly expressed on ovarian cancer cells: cell surface Muc16 and intracellular WT1. Muc16-specific CAR T cells (4H11) were engineered to secrete a bispecific T cell engager (BiTE) constructed from a TCR mimic antibody (ESK1) reactive with the WT1-derived epitope RMFPNAPYL (RMF) presented by HLA-A2 molecules. The secreted ESK1 BiTE recruited and redirected other T cells to WT1 on the tumor cells. We show that ESK1 BiTE-secreting 4H11 CAR T cells exhibited enhanced anticancer activity against cancer cells with low Muc16 expression, compared to 4H11 CAR T cells alone, both in vitro and in mouse tumor models. Dual orthogonal cytotoxic modalities with different specificities targeting both surface and intracellular tumor-associated antigens present a promising strategy to overcome resistance to CAR T cell therapy in epithelial ovarian cancer and other cancers.
Journal Article
MUC1 and MUC16: critical for immune modulation in cancer therapeutics
2024
The Mucin (MUC) family, a range of highly glycosylated macromolecules, is ubiquitously expressed in mammalian epithelial cells. Such molecules are pivotal in establishing protective mucosal barriers, serving as defenses against pathogenic assaults. Intriguingly, the aberrant expression of specific MUC proteins, notably Mucin 1 (MUC1) and Mucin 16 (MUC16), within tumor cells, is intimately associated with oncogenesis, proliferation, and metastasis. This association involves various mechanisms, including cellular proliferation, viability, apoptosis resistance, chemotherapeutic resilience, metabolic shifts, and immune surveillance evasion. Due to their distinctive biological roles and structural features in oncology, MUC proteins have attracted considerable attention as prospective targets and biomarkers in cancer therapy. The current review offers an exhaustive exploration of the roles of MUC1 and MUC16 in the context of cancer biomarkers, elucidating their critical contributions to the mechanisms of cellular signal transduction, regulation of immune responses, and the modulation of the tumor microenvironment. Additionally, the article evaluates the latest advances in therapeutic strategies targeting these mucins, focusing on innovations in immunotherapies and targeted drugs, aiming to enhance customization and accuracy in cancer treatments.
Journal Article
Targeting CA-125 Transcription by Development of a Conditionally Replicative Adenovirus for Ovarian Cancer Treatment
2021
CA-125, encoded by the MUC16 gene, is highly expressed in most ovarian cancer cells and thus serves as a tumor marker for monitoring disease progression or treatment response in ovarian cancer patients. However, targeting MUC16/CA-125 for ovarian cancer treatment has not been successful to date. In the current study, we performed multiple steps of high-fidelity PCR and obtained a 5 kb DNA fragment upstream of the human MUC16 gene. Reporter assays indicate that this DNA fragment possesses transactivation activity in CA-125-high cancer cells, but not in CA-125-low cancer cells, indicating that the DNA fragment contains the transactivation region that controls specific expression of the MUC16 gene in ovarian cancer cells. We further refined the promoter and found a 1040 bp fragment with similar transcriptional activity and specificity. We used this refined MUC16 promoter to replace the E1A promoter in the adenovirus type 5 genome DNA, where E1A is an essential gene for adenovirus replication. We then generated a conditionally replicative oncolytic adenovirus (CRAd) that replicates in and lyses CA-125-high cancer cells, but not CA-125-low or -negative cancer cells. In vivo studies showed that intraperitoneal virus injection prolonged the survival of NSG mice inoculated intraperitoneally (ip) with selected ovarian cancer cell lines. Furthermore, the CRAd replicates in and lyses primary ovarian cancer cells, but not normal cells, collected from ovarian cancer patients. Collectively, these data indicate that targeting MUC16 transactivation utilizing CRAd is a feasible approach for ovarian cancer treatment that warrants further investigation.
Journal Article
Mucin1 and Mucin16: Therapeutic Targets for Cancer Therapy
2021
The mucin (MUC) family is a group of highly glycosylated macromolecules that are abundantly expressed in mammalian epithelial cells. MUC proteins contribute to the formation of the mucus barrier and thus have protective functions against infection. Interestingly, some MUC proteins are aberrantly expressed in cancer cells and are involved in cancer development and progression, including cell growth, proliferation, the inhibition of apoptosis, chemoresistance, metabolic reprogramming, and immune evasion. With their unique biological and structural features, MUC proteins have been considered promising therapeutic targets and also biomarkers for human cancer. In this review, we discuss the biological roles of the transmembrane mucins MUC1 and MUC16 in the context of hallmarks of cancer and current efforts to develop MUC1- and MUC16-targeted therapies.
Journal Article
The Potential Role of MUC16 (CA125) Biomarker in Lung Cancer: A Magic Biomarker but with Adversity
by
Hakami, Zaki H.
,
Al-Gareeb, Ali I.
,
Sabatier, Jean-Marc
in
Biological markers
,
Biomarkers
,
Cancer
2022
Lung cancer is the second most commonly diagnosed cancer in the world. In terms of the diagnosis of lung cancer, combination carcinoembryonic antigen (CEA) and cancer antigen 125 (CA125) detection had higher sensitivity, specificity, and diagnostic odds ratios than CEA detection alone. Most individuals with elevated serum CA125 levels had lung cancer that was either in stage 3 or stage 4. Serum CA125 levels were similarly elevated in lung cancer patients who also had pleural effusions or ascites. Furthermore, there is strong evidence that human lung cancer produces CA125 in vitro, which suggests that other clinical illnesses outside of ovarian cancer could also be responsible for the rise of CA125. MUC16 (CA125) is a natural killer cell inhibitor. As a screening test for lung and ovarian cancer diagnosis and prognosis in the early stages, CA125 has been widely used as a marker in three different clinical settings. MUC16 mRNA levels in lung cancer are increased regardless of gender. As well, increased expression of mutated MUC16 enhances lung cancer cells proliferation and growth. Additionally, the CA125 serum level is thought to be a key indicator for lung cancer metastasis to the liver. Further, CA125 could be a useful biomarker in other cancer types diagnoses like ovarian, breast, and pancreatic cancers. One of the important limitations of CA125 as a first step in such a screening technique is that up to 20% of ovarian tumors lack antigen expression. Each of the 10 possible serum markers was expressed in 29–100% of ovarian tumors with minimal or no CA125 expression. Therefore, there is a controversy regarding CA125 in the diagnosis and prognosis of lung cancer and other cancer types. In this state, preclinical and clinical studies are warranted to elucidate the clinical benefit of CA125 in the diagnosis and prognosis of lung cancer.
Journal Article
Membrane-bound mucins: the mechanistic basis for alterations in the growth and survival of cancer cells
2010
Mucins (MUC) are high molecular weight O-linked glycoproteins whose primary functions are to hydrate, protect, and lubricate the epithelial luminal surfaces of the ducts within the human body. The MUC family is comprised of large secreted gel forming and transmembrane (TM) mucins. MUC1, MUC4, and MUC16 are the well-characterized TM mucins and have been shown to be aberrantly overexpressed in various malignancies including cystic fibrosis, asthma, and cancer. Recent studies have uncovered the unique roles of these mucins in the pathogenesis of cancer. These mucins possess specific domains that can make complex associations with various signaling pathways, impacting cell survival through alterations of cell growth, proliferation, death, and autophagy. The cytoplasmic domain of MUC1 serves as a scaffold for interaction with various signaling proteins. On the other hand, MUC4 mediates its effect by stabilizing and enhancing the activity of growth factor receptor ErbB2. MUC16, previously known as CA125, is a well-known serum marker for the diagnosis of ovarian cancer and has a key role in stimulation and dissemination of ovarian cancer cells by interacting with mesothelin and galectin. Therefore, herein we discuss the function and divergent mechanisms of MUC1, MUC4, and MUC16 in carcinogenesis in the context of alteration in cell growth and survival.
Journal Article
GlcNAc6ST2/CHST4 Is Essential for the Synthesis of R-10G-Reactive Keratan Sulfate/Sulfated N-Acetyllactosamine Oligosaccharides in Mouse Pleural Mesothelium
2024
We recently showed that 6-sulfo sialyl N-acetyllactosamine (LacNAc) in O-linked glycans recognized by the CL40 antibody is abundant in the pleural mesothelium under physiological conditions and that these glycans undergo complementary synthesis by GlcNAc6ST2 (encoded by Chst4) and GlcNAc6ST3 (encoded by Chst5) in mice. GlcNAc6ST3 is essential for the synthesis of R-10G-positive keratan sulfate (KS) in the brain. The predicted minimum epitope of the R-10G antibody is a dimeric asialo 6-sulfo LacNAc. Whether R-10G-reactive KS/sulfated LacNAc oligosaccharides are also present in the pleural mesothelium was unknown. The question of which GlcNAc6STs are responsible for R-10G-reactive glycans was an additional issue to be clarified. Here, we show that R-10G-reactive glycans are as abundant in the pulmonary pleura as CL40-reactive glycans and that GlcNAc6ST3 is only partially involved in the synthesis of these pleural R-10G glycans, unlike in the adult brain. Unexpectedly, GlcNAc6ST2 is essential for the synthesis of R-10G-positive KS/sulfated LacNAc oligosaccharides in the lung pleura. The type of GlcNAc6ST and the magnitude of its contribution to KS glycan synthesis varied among tissues in vivo. We show that GlcNAc6ST2 is required and sufficient for R-10G-reactive KS synthesis in the lung pleura. Interestingly, R-10G immunoreactivity in KSGal6ST (encoded by Chst1) and C6ST1 (encoded by Chst3) double-deficient mouse lungs was markedly increased. MUC16, a mucin molecule, was shown to be a candidate carrier protein for pleural R-10G-reactive glycans. These results suggest that R-10G-reactive KS/sulfated LacNAc oligosaccharides may play a role in mesothelial cell proliferation and differentiation. Further elucidation of the functions of sulfated glycans synthesized by GlcNAc6ST2 and GlcNAc6ST3, such as R-10G and CL40 glycans, in pathological conditions may lead to a better understanding of the underlying mechanisms of the physiopathology of the lung mesothelium.
Journal Article
Bypassing the immunosuppressive effects of CA125/MUC16 via re-engineered rituximab (NAV-006) to improve its antitumor activity in vivo
2025
Abstract
The monoclonal antibody rituximab functions through complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC) and is used to treat non-Hodgkin’s lymphoma. Elevated serum CA125/MUC16 levels, present in some follicular lymphoma patients, have been shown to correlate with reduced efficacy of rituximab. Previous studies revealed that CA125/MUC16 binds to rituximab, diminishing its CDC and ADCC. A rituximab variant, NAV-006, was engineered to counteract CA125/MUC16’s immunosuppressive effects. NAV-006 demonstrated enhanced CDC and ADCC activities and was unaffected by CA125/MUC16. In the present study, NAV-006 showed improved in vivo antitumor activity compared to rituximab in a human lymphoma model with reconstituted CA125/MUC16. Additionally, CA125/MUC16 bound to newer antibody-based lymphoma treatment agents, including obinutuzumab and tafasitamab, suppressing their immune effector functions. Bispecific antibodies mosunetuzumab and glofitamab also exhibited reduced cytotoxicity in the presence of CA125/MUC16. These findings suggest that NAV-006 could improve therapeutic efficacy in B-cell lymphomas, particularly in patients with elevated CA125/MUC16 levels.
Statement of Significance: Multiple recent studies have highlighted the immunosuppressive impact of MUC16/CA125 on antibodies immune effector function including rituximab (RITUXAN®). The present study presents data related to the engineering of a variant of rituximab that can escape MUC16/CA125 immunosuppressive effects resulting in improved efficacy in vivo.
Journal Article