Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,762,284 result(s) for "MULTIDISCIPLINARY SCIENCES"
Sort by:
Perceptions of the appropriate response to norm violation in 57 societies
Norm enforcement may be important for resolving conflicts and promoting cooperation. However, little is known about how preferred responses to norm violations vary across cultures and across domains. In a preregistered study of 57 countries (using convenience samples of 22,863 students and non-students), we measured perceptions of the appropriateness of various responses to a violation of a cooperative norm and to atypical social behaviors. Our findings highlight both cultural universals and cultural variation. We find a universal negative relation between appropriateness ratings of norm violations and appropriateness ratings of responses in the form of confrontation, social ostracism and gossip. Moreover, we find the country variation in the appropriateness of sanctions to be consistent across different norm violations but not across different sanctions. Specifically, in those countries where use of physical confrontation and social ostracism is rated as less appropriate, gossip is rated as more appropriate. Little is known about people’s preferred responses to norm violations across countries. Here, in a study of 57 countries, the authors highlight cultural similarities and differences in people’s perception of the appropriateness of norm violations.
Acceleration of radiative recombination for efficient perovskite LEDs
The increasing demands for more efficient and brighter thin-film light-emitting diodes (LEDs) in flat-panel display and solid-state lighting applications have promoted research into three-dimensional (3D) perovskites. These materials exhibit high charge mobilities and low quantum efficiency droop 1 – 6 , making them promising candidates for achieving efficient LEDs with enhanced brightness. To improve the efficiency of LEDs, it is crucial to minimize nonradiative recombination while promoting radiative recombination. Various passivation strategies have been used to reduce defect densities in 3D perovskite films, approaching levels close to those of single crystals 3 . However, the slow radiative (bimolecular) recombination has limited the photoluminescence quantum efficiencies (PLQEs) of 3D perovskites to less than 80% (refs.  1 , 3 ), resulting in external quantum efficiencies (EQEs) of LED devices of less than 25%. Here we present a dual-additive crystallization method that enables the formation of highly efficient 3D perovskites, achieving an exceptional PLQE of 96%. This approach promotes the formation of tetragonal FAPbI 3 perovskite, known for its high exciton binding energy, which effectively accelerates the radiative recombination. As a result, we achieve perovskite LEDs with a record peak EQE of 32.0%, with the efficiency remaining greater than 30.0% even at a high current density of 100 mA cm −2 . These findings provide valuable insights for advancing the development of high-efficiency and high-brightness perovskite LEDs. A dual-additive crystallization method using PyNI and 5AVA as additives results in highly efficient 3D perovskite films with enhanced photoluminescence quantum efficiencies and external quantum efficiencies, and hence increased LED performance.
Detecting hallucinations in large language models using semantic entropy
Large language model (LLM) systems, such as ChatGPT 1 or Gemini 2 , can show impressive reasoning and question-answering capabilities but often ‘hallucinate’ false outputs and unsubstantiated answers 3 , 4 . Answering unreliably or without the necessary information prevents adoption in diverse fields, with problems including fabrication of legal precedents 5 or untrue facts in news articles 6 and even posing a risk to human life in medical domains such as radiology 7 . Encouraging truthfulness through supervision or reinforcement has been only partially successful 8 . Researchers need a general method for detecting hallucinations in LLMs that works even with new and unseen questions to which humans might not know the answer. Here we develop new methods grounded in statistics, proposing entropy-based uncertainty estimators for LLMs to detect a subset of hallucinations—confabulations—which are arbitrary and incorrect generations. Our method addresses the fact that one idea can be expressed in many ways by computing uncertainty at the level of meaning rather than specific sequences of words. Our method works across datasets and tasks without a priori knowledge of the task, requires no task-specific data and robustly generalizes to new tasks not seen before. By detecting when a prompt is likely to produce a confabulation, our method helps users understand when they must take extra care with LLMs and opens up new possibilities for using LLMs that are otherwise prevented by their unreliability. Hallucinations (confabulations) in large language model systems can be tackled by measuring uncertainty about the meanings of generated responses rather than the text itself to improve question-answering accuracy.
Photonic chip-based low-noise microwave oscillator
Numerous modern technologies are reliant on the low-phase noise and exquisite timing stability of microwave signals. Substantial progress has been made in the field of microwave photonics, whereby low-noise microwave signals are generated by the down-conversion of ultrastable optical references using a frequency comb 1 – 3 . Such systems, however, are constructed with bulk or fibre optics and are difficult to further reduce in size and power consumption. In this work we address this challenge by leveraging advances in integrated photonics to demonstrate low-noise microwave generation via two-point optical frequency division 4 , 5 . Narrow-linewidth self-injection-locked integrated lasers 6 , 7 are stabilized to a miniature Fabry–Pérot cavity 8 , and the frequency gap between the lasers is divided with an efficient dark soliton frequency comb 9 . The stabilized output of the microcomb is photodetected to produce a microwave signal at 20 GHz with phase noise of −96 dBc Hz −1 at 100 Hz offset frequency that decreases to −135 dBc Hz −1 at 10 kHz offset—values that are unprecedented for an integrated photonic system. All photonic components can be heterogeneously integrated on a single chip, providing a significant advance for the application of photonics to high-precision navigation, communication and timing systems. We leverage advances in integrated photonics to generate low-noise microwaves with an optical frequency division architecture that can be low power and chip integrated.
Spectroscopic confirmation of two luminous galaxies at a redshift of 14
The first observations of the James Webb Space Telescope (JWST) have revolutionized our understanding of the Universe by identifying galaxies at redshift z  ≈ 13 (refs. 1 , 2 – 3 ). In addition, the discovery of many luminous galaxies at Cosmic Dawn ( z  > 10) has suggested that galaxies developed rapidly, in apparent tension with many standard models 4 , 5 , 6 , 7 – 8 . However, most of these galaxies lack spectroscopic confirmation, so their distances and properties are uncertain. Here we present JWST Advanced Deep Extragalactic Survey–Near-Infrared Spectrograph spectroscopic confirmation of two luminous galaxies at z = 14.32 − 0.20 + 0.08 and z  = 13.90 ± 0.17. The spectra reveal ultraviolet continua with prominent Lyman-α breaks but no detected emission lines. This discovery proves that luminous galaxies were already in place 300 million years after the Big Bang and are more common than what was expected before JWST. The most distant of the two galaxies is unexpectedly luminous and is spatially resolved with a radius of 260 parsecs. Considering also the very steep ultraviolet slope of the second galaxy, we conclude that both are dominated by stellar continuum emission, showing that the excess of luminous galaxies in the early Universe cannot be entirely explained by accretion onto black holes. Galaxy formation models will need to address the existence of such large and luminous galaxies so early in cosmic history. JWST–NIRSpec spectroscopic confirmation of two luminous galaxies is presented, proving that luminous galaxies were already in place 300 million years after the Big Bang and are more common than what was expected before JWST.
Mechanical metamaterials and beyond
Mechanical metamaterials enable the creation of structural materials with unprecedented mechanical properties. However, thus far, research on mechanical metamaterials has focused on passive mechanical metamaterials and the tunability of their mechanical properties. Deep integration of multifunctionality, sensing, electrical actuation, information processing, and advancing data-driven designs are grand challenges in the mechanical metamaterials community that could lead to truly intelligent mechanical metamaterials. In this perspective, we provide an overview of mechanical metamaterials within and beyond their classical mechanical functionalities. We discuss various aspects of data-driven approaches for inverse design and optimization of multifunctional mechanical metamaterials. Our aim is to provide new roadmaps for design and discovery of next-generation active and responsive mechanical metamaterials that can interact with the surrounding environment and adapt to various conditions while inheriting all outstanding mechanical features of classical mechanical metamaterials. Next, we deliberate the emerging mechanical metamaterials with specific functionalities to design informative and scientific intelligent devices. We highlight open challenges ahead of mechanical metamaterial systems at the component and integration levels and their transition into the domain of application beyond their mechanical capabilities. Mechanical metamaterials are known for their unconventional mechanical properties. In this perspective, the authors give an overview of the current state of mechanical materials research and suggest a roadmap for next-generation active and responsive mechanical metamaterials.
Concepts of extracellular matrix remodelling in tumour progression and metastasis
Tissues are dynamically shaped by bidirectional communication between resident cells and the extracellular matrix (ECM) through cell-matrix interactions and ECM remodelling. Tumours leverage ECM remodelling to create a microenvironment that promotes tumourigenesis and metastasis. In this review, we focus on how tumour and tumour-associated stromal cells deposit, biochemically and biophysically modify, and degrade tumour-associated ECM. These tumour-driven changes support tumour growth, increase migration of tumour cells, and remodel the ECM in distant organs to allow for metastatic progression. A better understanding of the underlying mechanisms of tumourigenic ECM remodelling is crucial for developing therapeutic treatments for patients. Tumors are more than cancer cells — the extracellular matrix is a protein structure that organizes all tissues and is altered in cancer. Here, the authors review recent progress in understanding how the cancer cells and tumor-associated stroma cells remodel the extracellular matrix to drive tumor growth and metastasis.
Ladderphane copolymers for high-temperature capacitive energy storage
For capacitive energy storage at elevated temperatures 1 – 4 , dielectric polymers are required to integrate low electrical conduction with high thermal conductivity. The coexistence of these seemingly contradictory properties remains a persistent challenge for existing polymers. We describe here a class of ladderphane copolymers exhibiting more than one order of magnitude lower electrical conductivity than the existing polymers at high electric fields and elevated temperatures. Consequently, the ladderphane copolymer possesses a discharged energy density of 5.34 J cm −3 with a charge–discharge efficiency of 90% at 200 °C, outperforming the existing dielectric polymers and composites. The ladderphane copolymers self-assemble into highly ordered arrays by π–π stacking interactions 5 , 6 , thus giving rise to an intrinsic through-plane thermal conductivity of 1.96 ± 0.06 W m −1  K −1 . The high thermal conductivity of the copolymer film permits efficient Joule heat dissipation and, accordingly, excellent cyclic stability at elevated temperatures and high electric fields. The demonstration of the breakdown self-healing ability of the copolymer further suggests the promise of the ladderphane structures for high-energy-density polymer capacitors operating under extreme conditions. A class of dielectric copolymers called ladderphanes is shown to outperform existing dielectric polymers and composites, with high discharged energy density and charge–discharge efficiency even at temperatures up to 200 °C.
Identification of carbon dioxide in an exoplanet atmosphere
Carbon dioxide (CO 2 ) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO 2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called ‘metallicity’) 1 – 3 , and thus the formation processes of the primary atmospheres of hot gas giants 4 – 6 . It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets 7 – 9 . Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO 2 , but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification 10 – 12 . Here we present the detection of CO 2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme 13 , 14 . The data used in this study span 3.0–5.5 micrometres in wavelength and show a prominent CO 2 absorption feature at 4.3 micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative–convective–thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO 2 , but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0 micrometres that is not reproduced by these models. Transmission spectroscopy observations from the James Webb Space Telescope show the detection of carbon dioxide in the atmosphere of the gas giant exoplanet WASP-39b.
Anomalous collapses of Nares Strait ice arches leads to enhanced export of Arctic sea ice
The ice arches that usually develop at the northern and southern ends of Nares Strait play an important role in modulating the export of Arctic Ocean multi-year sea ice. The Arctic Ocean is evolving towards an ice pack that is younger, thinner, and more mobile and the fate of its multi-year ice is becoming of increasing interest. Here, we use sea ice motion retrievals from Sentinel-1 imagery to report on the recent behavior of these ice arches and the associated ice fluxes. We show that the duration of arch formation has decreased over the past 20 years, while the ice area and volume fluxes along Nares Strait have both increased. These results suggest that a transition is underway towards a state where the formation of these arches will become atypical with a concomitant increase in the export of multi-year ice accelerating the transition towards a younger and thinner Arctic ice pack. Ice arches that form along Nares Strait, which separates Greenland and Ellesmere Island, act to reduce the export of thick multi-year ice out of the Arctic. Here, we show that there has been a recent trend towards shorter duration arch formation that has resulted in enhanced transport of ice along the strait.