Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
838 result(s) for "Macaca fascicularis - immunology"
Sort by:
A single-dose live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate
The expanding pandemic of coronavirus disease 2019 (COVID-19) requires the development of safe, efficacious and fast-acting vaccines. Several vaccine platforms are being leveraged for a rapid emergency response 1 . Here we describe the development of a candidate vaccine (YF-S0) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that uses live-attenuated yellow fever 17D (YF17D) vaccine as a vector to express a noncleavable prefusion form of the SARS-CoV-2 spike antigen. We assess vaccine safety, immunogenicity and efficacy in several animal models. YF-S0 has an excellent safety profile and induces high levels of SARS-CoV-2 neutralizing antibodies in hamsters ( Mesocricetus auratus ), mice ( Mus musculus ) and cynomolgus macaques ( Macaca fascicularis ), and—concomitantly—protective immunity against yellow fever virus. Humoral immunity is complemented by a cellular immune response with favourable T helper 1 polarization, as profiled in mice. In a hamster model 2 and in macaques, YF-S0 prevents infection with SARS-CoV-2. Moreover, a single dose conferred protection from lung disease in most of the vaccinated hamsters within as little as 10 days. Taken together, the quality of the immune responses triggered and the rapid kinetics by which protective immunity can be attained after a single dose warrant further development of this potent SARS-CoV-2 vaccine candidate. A candidate vaccine against SARS-CoV-2 that uses the yellow fever 17D live-virus vector is highly efficacious and displays a favourable safety profile in Syrian hamster, mouse and cynomolgus macaque models.
Considerations in the Use of Nonhuman Primate Models of Ebola Virus and Marburg Virus Infection
The filoviruses, Ebola virus and Marburg virus, are zoonotic pathogens that cause severe hemorrhagic fever in humans and nonhuman primates (NHPs), with case-fatality rates ranging from 23% to 90%. The current outbreak of Ebola virus infection in West Africa, with >26 000 cases, demonstrates the long-underestimated public health danger that filoviruses pose as natural human pathogens. Currently, there are no vaccines or treatments licensed for human use. Licensure of any medical countermeasure may require demonstration of efficacy in the gold standard cynomolgus or rhesus macaque models of filovirus infection. Substantial progress has been made over the last decade in characterizing the filovirus NHP models. However, there is considerable debate over a variety of experimental conditions, including differences among filovirus isolates used, routes and doses of exposure, and euthanasia criteria, all of which may contribute to variability of results among different laboratories. As an example of the importance of understanding these differences, recent data with Ebola virus shows that an addition of a single uridine residue in the glycoprotein gene at the editing site attenuates the virus. Here, we draw on decades of experience working with filovirus-infected NHPs to provide a perspective on the importance of various experimental conditions.
Optimization of non-coding regions for a non-modified mRNA COVID-19 vaccine
The CVnCoV (CureVac) mRNA vaccine for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was recently evaluated in a phase 2b/3 efficacy trial in humans 1 . CV2CoV is a second-generation mRNA vaccine containing non-modified nucleosides but with optimized non-coding regions and enhanced antigen expression. Here we report the results of a head-to-head comparison of the immunogenicity and protective efficacy of CVnCoV and CV2CoV in non-human primates. We immunized 18 cynomolgus macaques with two doses of 12 μg lipid nanoparticle-formulated CVnCoV or CV2CoV or with sham ( n  = 6 per group). Compared with CVnCoV, CV2CoV induced substantially higher titres of binding and neutralizing antibodies, memory B cell responses and T cell responses as well as more potent neutralizing antibody responses against SARS-CoV-2 variants, including the Delta variant. Moreover, CV2CoV was found to be comparably immunogenic to the BNT162b2 (Pfizer) vaccine in macaques. Although CVnCoV provided partial protection against SARS-CoV-2 challenge, CV2CoV afforded more robust protection with markedly lower viral loads in the upper and lower respiratory tracts. Binding and neutralizing antibody titres were correlated with protective efficacy. These data demonstrate that optimization of non-coding regions can greatly improve the immunogenicity and protective efficacy of a non-modified mRNA SARS-CoV-2 vaccine in non-human primates. CV2CoV, a second-generation mRNA COVID-19 vaccine with non-modified nucleosides but optimized non-coding regions, is demonstrated to be effective against SARS-CoV-2 challenge when tested in non-human primates.
Comparison of nonhuman primates identified the suitable model for COVID-19
Identification of a suitable nonhuman primate (NHP) model of COVID-19 remains challenging. Here, we characterized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in three NHP species: Old World monkeys Macaca mulatta (M. mulatta) and Macaca fascicularis (M. fascicularis) and New World monkey Callithrix jacchus (C. jacchus). Infected M. mulatta and M. fascicularis showed abnormal chest radiographs, an increased body temperature and a decreased body weight. Viral genomes were detected in swab and blood samples from all animals. Viral load was detected in the pulmonary tissues of M. mulatta and M. fascicularis but not C. jacchus. Furthermore, among the three animal species, M. mulatta showed the strongest response to SARS-CoV-2, including increased inflammatory cytokine expression and pathological changes in the pulmonary tissues. Collectively, these data revealed the different susceptibilities of Old World and New World monkeys to SARS-CoV-2 and identified M. mulatta as the most suitable for modeling COVID-19.
COVID-19 cynomolgus macaque model reflecting human COVID-19 pathological conditions
The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global threat to human health and life. A useful pathological animal model accurately reflecting human pathology is needed to overcome the COVID-19 crisis. In the present study, COVID-19 cynomolgus monkey models including monkeys with underlying diseases causing severe pathogenicity such as metabolic disease and elderly monkeys were examined. Cynomolgus macaques with various clinical conditions were intranasally and/or intratracheally inoculated with SARS-CoV-2. Infection with SARS-CoV-2 was found in mucosal swab samples, and a higher level and longer period of viral RNA was detected in elderly monkeys than in young monkeys. Pneumonia was confirmed in all of the monkeys by computed tomography images. When monkeys were readministrated SARS-CoV-2 at 56 d or later after initial infection all of the animals showed inflammatory responses without virus detection in swab samples. Surprisingly, in elderly monkeys reinfection showed transient severe pneumonia with increased levels of various serum cytokines and chemokines compared with those in primary infection. The results of this study indicated that the COVID-19 cynomolgus monkey model reflects the pathophysiology of humans and would be useful for elucidating the pathophysiology and developing therapeutic agents and vaccines.
In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses
Pandemic virus characterized Analysis of a series of clinical isolates of the swine-origin H1N1 influenza virus reveals that in mammalian models (mice, ferrets and macaques) the current pandemic virus is associated with more severe disease than a seasonal H1N1 strain. The viruses can also infect pigs but do not cause clinical signs. All antivirus drugs tested, including Tamiflu, were effective in cell culture against the new virus, lending support to the use of these compounds as a first line of defence against the pandemic. On 11 June 2009 the World Health Organization declared that the infections caused by a new strain of influenza A virus closely related to swine viruses had reached pandemic levels. Here, one of the first US isolates of the new swine-origin H1N1 influenza virus (S-OIV) is characterized, as well as several other S-OIV isolates, both in vitro and in vivo . Influenza A viruses cause recurrent outbreaks at local or global scale with potentially severe consequences for human health and the global economy. Recently, a new strain of influenza A virus was detected that causes disease in and transmits among humans, probably owing to little or no pre-existing immunity to the new strain. On 11 June 2009 the World Health Organization declared that the infections caused by the new strain had reached pandemic proportion. Characterized as an influenza A virus of the H1N1 subtype, the genomic segments of the new strain were most closely related to swine viruses 1 . Most human infections with swine-origin H1N1 influenza viruses (S-OIVs) seem to be mild; however, a substantial number of hospitalized individuals do not have underlying health issues, attesting to the pathogenic potential of S-OIVs. To achieve a better assessment of the risk posed by the new virus, we characterized one of the first US S-OIV isolates, A/California/04/09 (H1N1; hereafter referred to as CA04), as well as several other S-OIV isolates, in vitro and in vivo . In mice and ferrets, CA04 and other S-OIV isolates tested replicate more efficiently than a currently circulating human H1N1 virus. In addition, CA04 replicates efficiently in non-human primates, causes more severe pathological lesions in the lungs of infected mice, ferrets and non-human primates than a currently circulating human H1N1 virus, and transmits among ferrets. In specific-pathogen-free miniature pigs, CA04 replicates without clinical symptoms. The assessment of human sera from different age groups suggests that infection with human H1N1 viruses antigenically closely related to viruses circulating in 1918 confers neutralizing antibody activity to CA04. Finally, we show that CA04 is sensitive to approved and experimental antiviral drugs, suggesting that these compounds could function as a first line of defence against the recently declared S-OIV pandemic.
Paradoxical Effect of Chloroquine Treatment in Enhancing Chikungunya Virus Infection
Since 2005, Chikungunya virus (CHIKV) re-emerged and caused numerous outbreaks in the world, and finally, was introduced into the Americas in 2013. The lack of CHIKV-specific therapies has led to the use of non-specific drugs. Chloroquine, which is commonly used to treat febrile illnesses in the tropics, has been shown to inhibit CHIKV replication in vitro. To assess the in vivo effect of chloroquine, two complementary studies were performed: (i) a prophylactic study in a non-human primate model (NHP); and (ii) a curative study “CuraChik”, which was performed during the Reunion Island outbreak in 2006 in a human cohort. Clinical, biological, and immunological data were compared between treated and placebo groups. Acute CHIKV infection was exacerbated in NHPs treated with prophylactic administration of chloroquine. These NHPs displayed a higher viremia and slower viral clearance (p < 0.003). Magnitude of viremia was correlated to the type I IFN response (Rho = 0.8, p < 0.001) and severe lymphopenia (Rho = 0.8, p < 0.0001), while treatment led to a delay in both CHIKV-specific cellular and IgM responses (p < 0.02 and p = 0.04, respectively). In humans, chloroquine treatment did not affect viremia or clinical parameters during the acute stage of the disease (D1 to D14), but affected the levels of C-reactive Protein (CRP), IFNα, IL-6, and MCP1 over time (D1 to D16). Importantly, no positive effect could be detected on prevalence of persistent arthralgia at Day 300. Although inhibitory in vitro, chloroquine as a prophylactic treatment in NHPs enhances CHIKV replication and delays cellular and humoral response. In patients, curative chloroquine treatment during the acute phase decreases the levels of key cytokines, and thus may delay adaptive immune responses, as observed in NHPs, without any suppressive effect on peripheral viral load.
Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus
The deadly 1918 flu virus The 1918 'Spanish flu' influenza pandemic was unusually severe, causing about 50 million deaths. Why was it so destructive? The lack of antibiotics to fight secondary infections, and socioeconomic factors may be relevant. But experimental infection of nonhuman primates with reconstructed 1918 virus suggests that the lethal nature of the virus itself was a big factor. It is in fact the only influenza virus lethal to experimentally infected nonhuman primates, and the 1918 virus, unlike other strains, suppresses innate immune responses. The H5N1 viruses now circulating cause a severe lung infection similar to that caused by the 1918 virus and also suppress innate immunity, so therapies that protect this type of host immunity might reduce the severity of infection due to these influenza viruses. The 1918 influenza pandemic was unusually severe, resulting in about 50 million deaths worldwide 1 . The 1918 virus is also highly pathogenic in mice, and studies have identified a multigenic origin of this virulent phenotype in mice 2 , 3 , 4 . However, these initial characterizations of the 1918 virus did not address the question of its pathogenic potential in primates. Here we demonstrate that the 1918 virus caused a highly pathogenic respiratory infection in a cynomolgus macaque model that culminated in acute respiratory distress and a fatal outcome. Furthermore, infected animals mounted an immune response, characterized by dysregulation of the antiviral response, that was insufficient for protection, indicating that atypical host innate immune responses may contribute to lethality. The ability of influenza viruses to modulate host immune responses, such as that demonstrated for the avian H5N1 influenza viruses 5 , may be a feature shared by the virulent influenza viruses.
VDJ Gene Usage in IgM Repertoires of Rhesus and Cynomolgus Macaques
Macaques are frequently used to evaluate candidate vaccines and to study infection-induced antibody responses, requiring an improved understanding of their naïve immunoglobulin (IG) repertoires. Baseline gene usage frequencies contextualize studies of antigen-specific immune responses, providing information about how easily one may stimulate a response with a particular VDJ recombination. Studies of human IgM repertoires have shown that IG VDJ gene frequencies vary several orders of magnitude between the most and least utilized genes in a manner that is consistent across many individuals but to date similar analyses are lacking for macaque IgM repertoires. Here, we quantified VDJ gene usage levels in unmutated IgM repertoires of 45 macaques, belonging to two species and four commonly used subgroups: Indian and Chinese origin rhesus macaques and Indonesian and Mauritian origin cynomolgus macaques. We show that VDJ gene frequencies differed greatly between the most and least used genes, with similar overall patterns observed in macaque subgroups and individuals. However, there were also clear differences affecting the use of specific V, D and J genes. Furthermore, in contrast to humans, macaques of both species utilized IGHV4 family genes to a much higher extent and showed evidence of evolutionary expansion of genes of this family. Finally, we used the results to inform the analysis of a broadly neutralizing HIV-1 antibody elicited in SHIV-infected rhesus macaques, RHA1.V2.01, which binds the apex of the Env trimer in a manner that mimics the binding mode of PGT145. We discuss the likelihood that similar antibodies could be elicited in different macaque subgroups.
Chikungunya Vaccine Candidate Is Highly Attenuated and Protects Nonhuman Primates Against Telemetrically Monitored Disease Following a Single Dose
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes major epidemics of rash, fever, and debilitating arthritis. Currently, there are no vaccines or antivirals available for prevention or treatment. We therefore generated 2 live-attenuated vaccine candidates based on the insertion of a picornavirus internal ribosome entry site (IRES) sequence into the genome of CHIKV. Vaccination of cynomolgus macaques with a single dose of either vaccine produced no signs of disease but was highly inununogenic. After challenge with a subcutaneous inoculation of wild-type CHIKV, both vaccine candidates prevented the development of detectable viremia. Protected animals also exhibited no significant changes in core body temperature or cardiovascular rhythm, whereas sham-vaccinated animals showed hyperthermia, followed by sustained hypothermia, as well as significant changes in heart rate. These CHIKV/IRES vaccine candidates appear to be safe and efficacious, supporting their strong potential as human vaccines to protect against CHIKV infection and reduce transmission and further spread.