Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
692,187 result(s) for "Machine Learning"
Sort by:
Ensemble Machine Learning: Advances in Research and Applications
This book delves into the dynamic realm of ensemble methods, offering a comprehensive exploration of its evolution, methodologies, and diverse applications. Chapters are gathered from the collective wisdom of researchers, practitioners, and innovators who have pioneered this ever-evolving domain. This book serves as a compendium, bringing together theoretical foundations, cutting-edge advancements, and practical insights, catering to both seasoned experts and those venturing into the intricate world of ensemble learning. Each chapter encapsulates the essence of collaboration among diverse models, unveiling the intricacies of ensemble techniques, their fusion strategies, and their impact across industries. From boosting algorithms to bagging, stacking, and beyond, this book illuminates the nuances of ensemble learning, illustrating how these techniques amplify predictive accuracy, enhance generalization, and fortify models against the complexities of real-world data. The editors hope this book will serve as a guiding beacon for enthusiasts, researchers, and practitioners navigating the intricate landscape of ensemble machine learning, fostering innovation, and paving the way for future breakthroughs.
Human-in-the-loop machine learning: a state of the art
Researchers are defining new types of interactions between humans and machine learning algorithms generically called human-in-the-loop machine learning. Depending on who is in control of the learning process, we can identify: active learning, in which the system remains in control; interactive machine learning, in which there is a closer interaction between users and learning systems; and machine teaching, where human domain experts have control over the learning process. Aside from control, humans can also be involved in the learning process in other ways. In curriculum learning human domain experts try to impose some structure on the examples presented to improve the learning; in explainable AI the focus is on the ability of the model to explain to humans why a given solution was chosen. This collaboration between AI models and humans should not be limited only to the learning process; if we go further, we can see other terms that arise such as Usable and Useful AI. In this paper we review the state of the art of the techniques involved in the new forms of relationship between humans and ML algorithms. Our contribution is not merely listing the different approaches, but to provide definitions clarifying confusing, varied and sometimes contradictory terms; to elucidate and determine the boundaries between the different methods; and to correlate all the techniques searching for the connections and influences between them.
GPT-4 is here: what scientists think
Researchers are excited about the AI — but many are frustrated that its underlying engineering is cloaked in secrecy. Researchers are excited about the AI — but many are frustrated that its underlying engineering is cloaked in secrecy. The GPT-4 logo is seen in this photo illustration on 13 March, 2023 in Warsaw, Poland Credit: Jaap Arriens/NurPhoto via Getty
Deep learning in practice
\"Deep Learning in Practice helps you learn how to develop and optimize a model for your projects using Deep Learning (DL) methods and architectures. This book is useful for undergraduate and graduate students, as well as practitioners in industry and academia. It will serve as a useful reference for learning deep learning fundamentals and implementing a deep learning model for any project, step by step\"-- Provided by publisher.
Oracle business intelligence with machine learning : artificial intelligence techniques in OBIEE for actionable BI
Use machine learning and Oracle Business Intelligence Enterprise Edition (OBIEE) as a comprehensive BI solution. This book follows a when-to, why-to, and how-to approach to explain the key steps involved in utilizing the artificial intelligence components now available for a successful OBIEE implementation. Oracle Business Intelligence with Machine Learning covers various technologies including using Oracle OBIEE, R Enterprise, Spatial Maps, and machine learning for advanced visualization and analytics. The machine learning material focuses on learning representations of input data suitable for a given prediction problem. This book focuses on the practical aspects of implementing machine learning solutions using the rich Oracle BI ecosystem. The primary objective of this book is to bridge the gap between the academic state-of-the-art and the industry state-of-the-practice by introducing you to machine learning with OBIEE. You will: See machine learning in OBIEE Master the fundamentals of machine learning and how it pertains to BI and advanced analytics Gain an introduction to Oracle R Enterprise Discover the practical considerations of implementing machine learning with OBIEE.
Predictors of real-time fMRI neurofeedback performance and improvement – A machine learning mega-analysis
•First machine learning mega-analysis to investigate predictors of real-time fMRI neurofeedback success.•Inclusion of a pre-training no feedback was associated with higher neurofeedback performance.•Patients were associated with higher neurofeedback performance than healthy individuals.•More data (sharing) in the future will allow for design optimization and a better understanding of neurofeedback learning. Real-time fMRI neurofeedback is an increasingly popular neuroimaging technique that allows an individual to gain control over his/her own brain signals, which can lead to improvements in behavior in healthy participants as well as to improvements of clinical symptoms in patient populations. However, a considerably large ratio of participants undergoing neurofeedback training do not learn to control their own brain signals and, consequently, do not benefit from neurofeedback interventions, which limits clinical efficacy of neurofeedback interventions. As neurofeedback success varies between studies and participants, it is important to identify factors that might influence neurofeedback success. Here, for the first time, we employed a big data machine learning approach to investigate the influence of 20 different design-specific (e.g. activity vs. connectivity feedback), region of interest-specific (e.g. cortical vs. subcortical) and subject-specific factors (e.g. age) on neurofeedback performance and improvement in 608 participants from 28 independent experiments. With a classification accuracy of 60% (considerably different from chance level), we identified two factors that significantly influenced neurofeedback performance: Both the inclusion of a pre-training no-feedback run before neurofeedback training and neurofeedback training of patients as compared to healthy participants were associated with better neurofeedback performance. The positive effect of pre-training no-feedback runs on neurofeedback performance might be due to the familiarization of participants with the neurofeedback setup and the mental imagery task before neurofeedback training runs. Better performance of patients as compared to healthy participants might be driven by higher motivation of patients, higher ranges for the regulation of dysfunctional brain signals, or a more extensive piloting of clinical experimental paradigms. Due to the large heterogeneity of our dataset, these findings likely generalize across neurofeedback studies, thus providing guidance for designing more efficient neurofeedback studies specifically for improving clinical neurofeedback-based interventions. To facilitate the development of data-driven recommendations for specific design details and subpopulations the field would benefit from stronger engagement in open science research practices and data sharing.