Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
375
result(s) for
"Macronucleus"
Sort by:
Mismatch Repair Protein Msh2 Is Necessary for Macronuclear Stability and Micronuclear Division in Tetrahymena thermophila
2023
Mismatch repair (MMR) is a conserved mechanism that is primarily responsible for the repair of DNA mismatches during DNA replication. Msh2 forms MutS heterodimer complexes that initiate the MMR in eukaryotes. The function of Msh2 is less clear under different chromatin structures. Tetrahymena thermophila contains a transcriptionally active macronucleus (MAC) and a transcriptionally silent micronucleus (MIC) in the same cytoplasm. Msh2 is localized in the MAC and MIC during vegetative growth. Msh2 is localized in the perinuclear region around the MIC and forms a spindle-like structure as the MIC divides. During the early conjugation stage, Msh2 is localized in the MIC and disappears from the parental MAC. Msh2 is localized in the new MAC and new MIC during the late conjugation stage. Msh2 also forms a spindle-like structure with a meiotic MIC and mitotic gametic nucleus. MSH2 knockdown inhibits the division of MAC and MIC during vegetative growth and affects cellular proliferation. MSH2 knockdown mutants are sensitive to cisplatin treatment. MSH2 knockdown also affects micronuclear meiosis and gametogenesis during sexual development. Furthermore, Msh2 interacts with MMR-dependent and MMR-independent factors. Therefore, Msh2 is necessary for macronuclear stability, as well as micronuclear mitosis and meiosis in Tetrahymena.
Journal Article
RNA-dependent control of gene amplification
2010
We exploit the unusual genome organization of the ciliate cell to analyze the control of specific gene amplification during a nuclear differentiation process. Ciliates contain two types of nuclei within one cell, the macronucleus and the micronucleus; and after sexual reproduction a new macronucleus is formed from a micronuclear derivative. During macronuclear differentiation, most extensive DNA reorganization, elimination, and fragmentation processes occur, resulting in a macronucleus containing short DNA molecules (nanochromosomes) representing individual genetic units and each being present in high copy number. It is believed that these processes are controlled by small nuclear RNAs but also by a template derived from the old macronucleus. We first describe the exact copy numbers of selected nanochromosomes in the macronucleus, and define the timing during nuclear differentiation at which copy number is determined. This led to the suggestion that DNA processing and copy number control may be closely related mechanisms. Degradation of an RNA template derived from the macronucleus leads to significant decrease in copy number, whereas injection of additional template molecules results in an increase in copy number and enhanced expression of the corresponding gene. These observations can be incorporated into a mechanistic model about an RNA-dependent epigenetic regulation of gene copy number during nuclear differentiation. This highlights that RNA, in addition to its well-known biological functions, can also be involved in the control of gene amplification.
Journal Article
The Oxytricha trifallax Macronuclear Genome: A Complex Eukaryotic Genome with 16,000 Tiny Chromosomes
by
Wiggins, Jessica L.
,
Mardis, Elaine R.
,
Nowacki, Mariusz
in
Base Sequence
,
Biology
,
Chromosomes
2013
The macronuclear genome of the ciliate Oxytricha trifallax displays an extreme and unique eukaryotic genome architecture with extensive genomic variation. During sexual genome development, the expressed, somatic macronuclear genome is whittled down to the genic portion of a small fraction (∼5%) of its precursor \"silent\" germline micronuclear genome by a process of \"unscrambling\" and fragmentation. The tiny macronuclear \"nanochromosomes\" typically encode single, protein-coding genes (a small portion, 10%, encode 2-8 genes), have minimal noncoding regions, and are differentially amplified to an average of ∼2,000 copies. We report the high-quality genome assembly of ∼16,000 complete nanochromosomes (∼50 Mb haploid genome size) that vary from 469 bp to 66 kb long (mean ∼3.2 kb) and encode ∼18,500 genes. Alternative DNA fragmentation processes ∼10% of the nanochromosomes into multiple isoforms that usually encode complete genes. Nucleotide diversity in the macronucleus is very high (SNP heterozygosity is ∼4.0%), suggesting that Oxytricha trifallax may have one of the largest known effective population sizes of eukaryotes. Comparison to other ciliates with nonscrambled genomes and long macronuclear chromosomes (on the order of 100 kb) suggests several candidate proteins that could be involved in genome rearrangement, including domesticated MULE and IS1595-like DDE transposases. The assembly of the highly fragmented Oxytricha macronuclear genome is the first completed genome with such an unusual architecture. This genome sequence provides tantalizing glimpses into novel molecular biology and evolution. For example, Oxytricha maintains tens of millions of telomeres per cell and has also evolved an intriguing expansion of telomere end-binding proteins. In conjunction with the micronuclear genome in progress, the O. trifallax macronuclear genome will provide an invaluable resource for investigating programmed genome rearrangements, complementing studies of rearrangements arising during evolution and disease.
Journal Article
An Extremely Streamlined Macronuclear Genome in the Free-Living Protozoan Fabrea salina
2022
Abstract
Ciliated protists are among the oldest unicellular organisms with a heterotrophic lifestyle and share a common ancestor with Plantae. Unlike any other eukaryotes, there are two distinct nuclei in ciliates with separate germline and somatic cell functions. Here, we assembled a near-complete macronuclear genome of Fabrea salina, which belongs to one of the oldest clades of ciliates. Its extremely minimized genome (18.35 Mb) is the smallest among all free-living heterotrophic eukaryotes and exhibits typical streamlined genomic features, including high gene density, tiny introns, and shrinkage of gene paralogs. Gene families involved in hypersaline stress resistance, DNA replication proteins, and mitochondrial biogenesis are expanded, and the accumulation of phosphatidic acid may play an important role in resistance to high osmotic pressure. We further investigated the morphological and transcriptomic changes in the macronucleus during sexual reproduction and highlighted the potential contribution of macronuclear residuals to this process. We believe that the minimized genome generated in this study provides novel insights into the genome streamlining theory and will be an ideal model to study the evolution of eukaryotic heterotrophs.
Journal Article
Mating of the Stichotrichous Ciliate Oxytricha trifallax Induces Production of a Class of 27 nt Small RNAs Derived from the Parental Macronucleus
2012
Ciliated protozoans possess two types of nuclei; a transcriptionally silent micronucleus, which serves as the germ line nucleus, and a transcriptionally active macronucleus, which serves as the somatic nucleus. The macronucleus is derived from a new diploid micronucleus after mating, with epigenetic information contributed by the parental macronucleus serving to guide the formation of the new macronucleus. In the stichotrichous ciliate Oxytricha trifallax, the macronuclear DNA is highly processed to yield gene-sized nanochromosomes with telomeres at each end. Here we report that soon after mating of Oxytricha trifallax, abundant 27 nt small RNAs are produced that are not present prior to mating. We performed next generation sequencing of Oxytricha small RNAs from vegetative and mating cells. Using sequence comparisons between macronuclear and micronuclear versions of genes, we found that the 27 nt RNA class derives from the parental macronucleus, not the developing macronucleus. These small RNAs are produced equally from both strands of macronuclear nanochromosomes, but in a highly non-uniform distribution along the length of the nanochromosome, and with a particular depletion in the 30 nt telomere-proximal positions. This production of small RNAs from the parental macronucleus during macronuclear development stands in contrast to the mechanism of epigenetic control in the distantly related ciliate Tetrahymena. In that species, 28-29 nt scanRNAs are produced from the micronucleus and these micronuclear-derived RNAs serve as epigenetic controllers of macronuclear development. Unlike the Tetrahymena scanRNAs, the Oxytricha macronuclear-derived 27 mers are not modified by 2'O-methylation at their 3' ends. We propose models for the role of these \"27macRNAs\" in macronuclear development.
Journal Article
GENOME STRUCTURE DRIVES PATTERNS OF GENE FAMILY EVOLUTION IN CILIATES, A CASE STUDY USING CHILODONELLA UNCINATA (PROTISTA, CILIOPHORA, PHYLLOPHARYNGEA)
by
Katz, Laura A.
,
Song, Weibo
,
Gao, Feng
in
Alternative processing
,
Alternative Splicing
,
Chilodonella uncinata
2014
In most lineages, diversity among gene family members results from gene duplication followed by sequence divergence. Because of the genome rearrangements during the development of somatic nuclei, gene family evolution in ciliates involves more complex processes. Previous work on the ciliate Chilodonella uncinata revealed that macronuclear β-tubulin gene family members are generated by alternative processing, in which germline regions are alternatively used in multiple macronuclear chromosomes. To further study genome evolution in this ciliate, we analyzed its transcriptome and found that (1) alternative processing is extensive among gene families; and (2) such gene families are likely to be C. uncinata specific. We characterized additional macronuclear and micronuclear copies of one candidate alternatively processed gene family—a protein kinase domain containing protein (PKc)—from two C. uncinata strains. Analysis of the PKc sequences reveals that (1) multiple PKc gene family members in the macronucleus share some identical regions flanked by divergent regions; and (2) the shared identical regions are processed from a single micronuclear chromosome. We discuss analogous processes in lineages across the eukaryotic tree of life to provide further insights on the impact of genome structure on gene family evolution in eukaryotes.
Journal Article
Macronuclear Genome Sequence of the Ciliate Tetrahymena thermophila, a Model Eukaryote
2006
The ciliate Tetrahymena thermophila is a model organism for molecular and cellular biology. Like other ciliates, this species has separate germline and soma functions that are embodied by distinct nuclei within a single cell. The germline-like micronucleus (MIC) has its genome held in reserve for sexual reproduction. The soma-like macronucleus (MAC), which possesses a genome processed from that of the MIC, is the center of gene expression and does not directly contribute DNA to sexual progeny. We report here the shotgun sequencing, assembly, and analysis of the MAC genome of T. thermophila, which is approximately 104 Mb in length and composed of approximately 225 chromosomes. Overall, the gene set is robust, with more than 27,000 predicted protein-coding genes, 15,000 of which have strong matches to genes in other organisms. The functional diversity encoded by these genes is substantial and reflects the complexity of processes required for a free-living, predatory, single-celled organism. This is highlighted by the abundance of lineage-specific duplications of genes with predicted roles in sensing and responding to environmental conditions (e.g., kinases), using diverse resources (e.g., proteases and transporters), and generating structural complexity (e.g., kinesins and dyneins). In contrast to the other lineages of alveolates (apicomplexans and dinoflagellates), no compelling evidence could be found for plastid-derived genes in the genome. UGA, the only T. thermophila stop codon, is used in some genes to encode selenocysteine, thus making this organism the first known with the potential to translate all 64 codons in nuclear genes into amino acids. We present genomic evidence supporting the hypothesis that the excision of DNA from the MIC to generate the MAC specifically targets foreign DNA as a form of genome self-defense. The combination of the genome sequence, the functional diversity encoded therein, and the presence of some pathways missing from other model organisms makes T. thermophila an ideal model for functional genomic studies to address biological, biomedical, and biotechnological questions of fundamental importance.
Journal Article
Enzymatic and chemical mapping of nucleosome distribution in purified micro- and macronuclei of the ciliated model organism, Tetrahymena thermophila
by
Wang, Yuanyuan
,
Chen, Xiao
,
Liu, Yifan
in
Biomedical and Life Sciences
,
Centrifugation, Density Gradient
,
Chromatin - genetics
2016
Genomic distribution of the nucleosome, the basic unit of chromatin, contains important epigenetic information. To map nucleosome distribution in structurally and functionally differentiated micronucleus (MIC) and macronucleus (MAC) of the ciliate
Tetrahymena thermophila
, we have purified MIC and MAC and performed micrococcal nuclease (MNase) digestion as well as hydroxyl radical cleavage. Different factors that may affect MNase digestion were examined, to optimize mono-nucleosome production. Mono-nucleosome purity was further improved by ultracentrifugation in a sucrose gradient. As MNase concentration increased, nucleosomal DNA sizes in MIC and MAC converged on 147 bp, as expected for the nucleosome core particle. Both MNase digestion and hydroxyl radical cleavage consistently showed a nucleosome repeat length of ~200 bp in MAC of
Tetrahymena
, supporting ~50 bp of linker DNA. Our work has systematically tested methods currently available for mapping nucleosome distribution in
Tetrahymena
, and provided a solid foundation for future epigenetic studies in this ciliated model organism.
Journal Article
Molecular basis of phenotypic plasticity in a marine ciliate
by
Li, Yichen
,
Pan, Jiao
,
Wang, Yaohai
in
Adaptation, Physiological - genetics
,
Aquatic ecosystems
,
Aquatic Organisms - genetics
2024
Phenotypic plasticity, which involves phenotypic transformation in the absence of genetic change, may serve as a strategy for organisms to survive in complex and highly fluctuating environments. However, its reaction norm, molecular basis, and evolution remain unclear in most organisms, especially microbial eukaryotes. In this study, we explored these questions by investigating the reaction norm, regulation, and evolution of phenotypic plasticity in the cosmopolitan marine free-living ciliates Glauconema spp., which undergo significant phenotypic changes in response to food shortages. This study led to the de novo assembly of macronuclear genomes using long-read sequencing, identified hundreds of differentially expressed genes associated with phenotypic plasticity in different life stages, validated the function of two of these genes, and revealed that the reaction norm of body shape in response to food density follows a power-law distribution. Purifying selection may be the dominant evolutionary force acting on the genes associated with phenotypic plasticity, and the overall data support the hypothesis that phenotypic plasticity is a trait maintained by natural selection. This study provides novel insight into the developmental genetics of phenotypic plasticity in non-model unicellular eukaryotes and sheds light on the complexity and long evolutionary history of this important survival strategy.
Journal Article
Atg5 Regulates Selective Autophagy of the Parental Macronucleus during Tetrahymena Sexual Reproduction
Nuclear autophagy is an important selective autophagy process. The selective autophagy of sexual development micronuclei (MICs) and the programmed nuclear degradation of parental macronucleus (paMAC) occur during sexual reproduction in Tetrahymena thermophila. The molecular regulatory mechanism of nuclear selective autophagy is unclear. In this study, the autophagy-related protein Atg5 was identified from T. thermophila. Atg5 was localized in the cytoplasm in the early sexual-development stage and was localized in the paMAC in the late sexual-development stage. During this stage, the degradation of meiotic products of MIC was delayed in atg5i mutants. Furthermore, paMAC was abnormally enlarged and delayed or failed to degrade. The expression level and lipidation of Atg8.2 significantly decreased in the mutants. All these results indicated that Atg5 was involved in the regulation of the selective autophagy of paMAC by regulating Atg8.2 in Tetrahymena.
Journal Article