Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
543 result(s) for "Macrophage Migration-Inhibitory Factors - genetics"
Sort by:
Candidate Genes Expression Profile Associated with Antidepressants Response in the GENDEP Study: Differentiating between Baseline ‘Predictors’ and Longitudinal ‘Targets’
To improve the 'personalized-medicine' approach to the treatment of depression, we need to identify biomarkers that, assessed before starting treatment, predict future response to antidepressants ('predictors'), as well as biomarkers that are targeted by antidepressants and change longitudinally during the treatment ('targets'). In this study, we tested the leukocyte mRNA expression levels of genes belonging to glucocorticoid receptor (GR) function (FKBP-4, FKBP-5, and GR), inflammation (interleukin (IL)-1α, IL-1β, IL-4, IL-6, IL-7, IL-8, IL-10, macrophage inhibiting factor (MIF), and tumor necrosis factor (TNF)-α), and neuroplasticity (brain-derived neurotrophic factor (BDNF), p11 and VGF), in healthy controls (n=34) and depressed patients (n=74), before and after 8 weeks of treatment with escitalopram or nortriptyline, as part of the Genome-based Therapeutic Drugs for Depression study. Non-responders had higher baseline mRNA levels of IL-1β (+33%), MIF (+48%), and TNF-α (+39%). Antidepressants reduced the levels of IL-1β (-6%) and MIF (-24%), and increased the levels of GR (+5%) and p11 (+8%), but these changes were not associated with treatment response. In contrast, successful antidepressant response was associated with a reduction in the levels of IL-6 (-9%) and of FKBP5 (-11%), and with an increase in the levels of BDNF (+48%) and VGF (+20%)-that is, response was associated with changes in genes that did not predict, at the baseline, the response. Our findings indicate a dissociation between 'predictors' and 'targets' of antidepressant responders. Indeed, while higher levels of proinflammatory cytokines predict lack of future response to antidepressants, changes in inflammation associated with antidepressant response are not reflected by all cytokines at the same time. In contrast, modulation of the GR complex and of neuroplasticity is needed to observe a therapeutic antidepressant effect.
Absolute Measurements of Macrophage Migration Inhibitory Factor and Interleukin-1-β mRNA Levels Accurately Predict Treatment Response in Depressed Patients
Background:Increased levels of inflammation have been associated with a poorer response to antidepressants in several clinical samples, but these findings have had been limited by low reproducibility of biomarker assays across laboratories, difficulty in predicting response probability on an individual basis, and unclear molecular mechanisms.Methods: Here we measured absolute mRNA values (a reliable quantitation of number of molecules) of Macrophage Migration Inhibitory Factor and interleukin-1β in a previously published sample from a randomized controlled trial comparing escitalopram vs nortriptyline (GENDEP) as well as in an independent, naturalistic replication sample. We then used linear discriminant analysis to calculate mRNA values cutoffs that best discriminated between responders and nonresponders after 12 weeks of antidepressants. As Macrophage Migration Inhibitory Factor and interleukin-1β might be involved in different pathways, we constructed a protein-protein interaction network by the Search Tool for the Retrieval of Interacting Genes/Proteins. Results:We identified cutoff values for the absolute mRNA measures that accurately predicted response probability on an individual basis, with positive predictive values and specificity for nonresponders of 100% in both samples (negative predictive value=82% to 85%, sensitivity=52% to 61%). Using network analysis, we identified different clusters of targets for these 2 cytokines, with Macrophage Migration Inhibitory Factor interacting predominantly with pathways involved in neurogenesis, neuroplasticity, and cell proliferation, and interleukin-1β interacting predominantly with pathways involved in the inflammasome complex, oxidative stress, and neurodegeneration.Conclusion:We believe that these data provide a clinically suitable approach to the personalization of antidepressant therapy: patients who have absolute mRNA values above the suggested cutoffs could be directed toward earlier access to more assertive antidepressant strategies, including the addition of other antidepressants or antiinflammatory drugs.
The immunobiology of MIF: function, genetics and prospects for precision medicine
The role of macrophage migration inhibitory factor (MIF) in autoimmunity is underscored by data showing that common functional polymorphisms in MIF are associated with disease susceptibility or clinical severity. MIF can regulate glucocorticoid-mediated immunosuppression and has a prominent function in cell survival signalling. Further specific functions of MIF are now being defined in different autoimmune diseases and MIF-targeted biologic therapeutics are in early-stage clinical trials. The unique structure of MIF is also directing the development of small-molecule MIF antagonists. Together, these efforts could provide a means of selectively intervening in pathogenesis and overcoming MIF-related genetic susceptibility to many rheumatic diseases.
A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1
Cells that experience stresses and accumulate excessive damage to DNA undergo cell death mediated by a nuclear enzyme known as PARP-1. During this process, apoptosis-inducing factor (AIF) translocates to the nucleus and activates one or more nucleases to cleave DNA. Wang et al. found that macrophage migration inhibitory factor (MIF) is an AIF-associated endonuclease that contributes to PARP-1-induced DNA fragmentation (see the Perspective by Jonas). In mouse neurons in culture, loss of MIF protected neurons from cell death caused by excessive stimulation. Targeting MIF could thus provide a therapeutic strategy against diseases in which PARP-1 activation is excessive. Science , this issue p. 82 ; see also p. 36 An endonuclease that functions in a disease-associated form of cell death is identified. [Also see Perspective by Jonas ] Inhibition or genetic deletion of poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) is protective against toxic insults in many organ systems. The molecular mechanisms underlying PARP-1–dependent cell death involve release of mitochondrial apoptosis-inducing factor (AIF) and its translocation to the nucleus, which results in chromatinolysis. We identified macrophage migration inhibitory factor (MIF) as a PARP-1–dependent AIF-associated nuclease (PAAN). AIF was required for recruitment of MIF to the nucleus, where MIF cleaves genomic DNA into large fragments. Depletion of MIF, disruption of the AIF-MIF interaction, or mutation of glutamic acid at position 22 in the catalytic nuclease domain blocked MIF nuclease activity and inhibited chromatinolysis, cell death induced by glutamate excitotoxicity, and focal stroke. Inhibition of MIF’s nuclease activity is a potential therapeutic target for diseases caused by excessive PARP-1 activation.
Exosomes from adipose-derived stem cells regulate M1/M2 macrophage phenotypic polarization to promote bone healing via miR-451a/MIF
Objectives Bone defects caused by diseases and trauma are usually accompanied by inflammation, and the implantation of biomaterials as a common repair method has also been found to cause inflammatory reactions, which affect bone metabolism and new bone formation. This study investigated whether exosomes from adipose-derived stem cells (ADSC-Exos) plays an immunomodulatory role in traumatic bone defects and elucidated the underlying mechanisms. Methods ADSC-Exos were loaded by a biomaterial named gelatine nanoparticles (GNPs), physical and chemical properties were analysed by zeta potential, surface topography and rheology. A rat model of skull defect was used for our in vivo studies, and micro-CT and histological staining were used to analyse histological changes in the bone defect area. RT-qPCR and western blotting were performed to verify that ADSC-Exos could regulate M1/M2 macrophage polarization. MicroRNA (miRNA) array analysis was conducted to determine the miRNA expression profiles of ADSC-Exos. After macrophages were treated with a miR-451a mimic, miR-451a inhibitor and ISO-1, the relative expression of genes and proteins was measured by RT-qPCR and western blotting. Results In vivo, micro-CT and histological staining showed that exosome-loaded GNPs (GNP-Exos) hydrogel, with good biocompatibility and strong mechanical adaptability, exhibited immunomodulatory effect mainly by regulating macrophage immunity and promoting bone tissue healing. Immunofluorescence further indicated that ADSC-Exos reduced M1 marker (iNOS) expression and increased M2 marker (CD206) expression. Moreover, in vitro studies, western blotting and RT-qPCR showed that ADSC-Exos inhibited M1 macrophage marker expression and upregulated M2 macrophage marker expression. MiR-451a was enriched in ADSC-Exos and targeted macrophage migration inhibitory factor (MIF). Macrophages treated with the miR-451a mimic showed lower expression of M1 markers. In contrast, miR-451a inhibitor treatment upregulated the expression of M1 markers and downregulated the expression of M2 markers, while ISO-1 (a MIF inhibitor) treatment upregulated miR-451a expression and downregulated M1 macrophage marker expression. Conclusion GNP-Exos can effectively regulate bone immune metabolism and further promote bone healing partly through immune regulation of miR-451a, which may provide a therapeutic direction for bone repair.
Macrophage migration inhibitory factor is required for NLRP3 inflammasome activation
Macrophage migration inhibitory factor (MIF) exerts multiple effects on immune cells, as well as having functions outside the immune system. MIF can promote inflammation through the induction of other cytokines, including TNF, IL-6, and IL-1 family cytokines. Here, we show that inhibition of MIF regulates the release of IL-1α, IL-1β, and IL-18, not by affecting transcription or translation of these cytokines, but via activation of the NLRP3 inflammasome. MIF is required for the interaction between NLRP3 and the intermediate filament protein vimentin, which is critical for NLRP3 activation. Further, we demonstrate that MIF interacts with NLRP3, indicating a role for MIF in inflammasome activation independent of its role as a cytokine. These data advance our understanding of how MIF regulates inflammation and identify it as a factor critical for NLRP3 inflammasome activation. MIF is a cytokine best known for its modulatory effect on expression of proinflammatory cytokines. Here the authors show that MIF facilitates the NLRP3–vimentin interaction, resulting in Nlrp3 inflammasome activation.
CD74 is a functional MIF receptor on activated CD4+ T cells
Next to its classical role in MHC II-mediated antigen presentation, CD74 was identified as a high-affinity receptor for macrophage migration inhibitory factor (MIF), a pleiotropic cytokine and major determinant of various acute and chronic inflammatory conditions, cardiovascular diseases and cancer. Recent evidence suggests that CD74 is expressed in T cells, but the functional relevance of this observation is poorly understood. Here, we characterized the regulation of CD74 expression and that of the MIF chemokine receptors during activation of human CD4 + T cells and studied links to MIF-induced T-cell migration, function, and COVID-19 disease stage. MIF receptor profiling of resting primary human CD4 + T cells via flow cytometry revealed high surface expression of CXCR4, while CD74, CXCR2 and ACKR3/CXCR7 were not measurably expressed. However, CD4 + T cells constitutively expressed CD74 intracellularly, which upon T-cell activation was significantly upregulated, post-translationally modified by chondroitin sulfate and could be detected on the cell surface, as determined by flow cytometry, Western blot, immunohistochemistry, and re-analysis of available RNA-sequencing and proteomic data sets. Applying 3D-matrix-based live cell-imaging and receptor pathway-specific inhibitors, we determined a causal involvement of CD74 and CXCR4 in MIF-induced CD4 + T-cell migration. Mechanistically, proximity ligation assay visualized CD74/CXCR4 heterocomplexes on activated CD4 + T cells, which were significantly diminished after MIF treatment, pointing towards a MIF-mediated internalization process. Lastly, in a cohort of 30 COVID-19 patients, CD74 surface expression was found to be significantly upregulated on CD4 + and CD8 + T cells in patients with severe compared to patients with only mild disease course. Together, our study characterizes the MIF receptor network in the course of T-cell activation and reveals CD74 as a novel functional MIF receptor and MHC II-independent activation marker of primary human CD4 + T cells.
Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and 'instruct' them with pattern-recognition and motility programs
The signals involved in coordinating the navigation of myeloid cells in tissues are incompletely understood. Massberg and colleagues show that NG2 + pericytes control the pattern and efficacy of interstitial leukocyte migration. Coordinated navigation within tissues is essential for cells of the innate immune system to reach the sites of inflammatory processes, but the signals involved are incompletely understood. Here we demonstrate that NG2 + pericytes controlled the pattern and efficacy of the interstitial migration of leukocytes in vivo . In response to inflammatory mediators, pericytes upregulated expression of the adhesion molecule ICAM-1 and released the chemoattractant MIF. Arteriolar and capillary pericytes attracted and interacted with myeloid leukocytes after extravasating from postcapillary venules, 'instructing' them with pattern-recognition and motility programs. Inhibition of MIF neutralized the migratory cues provided to myeloid leukocytes by NG2 + pericytes. Hence, our results identify a previously unknown role for NG2 + pericytes as an active component of innate immune responses, which supports the immunosurveillance and effector function of extravasated neutrophils and macrophages.
Neutralization of the Plasmodium-encoded MIF ortholog confers protective immunity against malaria infection
Plasmodium species produce an ortholog of the cytokine macrophage migration inhibitory factor, PMIF, which modulates the host inflammatory response to malaria. Using a novel RNA replicon-based vaccine, we show the impact of PMIF immunoneutralization on the host response and observed improved control of liver and blood-stage Plasmodium infection, and complete protection from re-infection. Vaccination against PMIF delayed blood-stage patency after sporozoite infection, reduced the expression of the Th1-associated inflammatory markers TNF-α, IL-12, and IFN-γ during blood-stage infection, augmented Tfh cell and germinal center responses, increased anti- Plasmodium antibody titers, and enhanced the differentiation of antigen-experienced memory CD4 T cells and liver-resident CD8 T cells. Protection from re-infection was recapitulated by the adoptive transfer of CD8 or CD4 T cells from PMIF RNA immunized hosts. Parasite MIF inhibition may be a useful approach to promote immunity to Plasmodium and potentially other parasite genera that produce MIF orthologous proteins. Plasmodium species produce an ortholog of the cytokine macrophage migration inhibitory factor, PMIF, which modulates the host inflammatory response to malaria. Here, the authors show that inhibition of PMIF may have translational benefits for managing malaria infections.
MIF and D-DT are potential disease severity modifiers in male MS subjects
Little is known about mechanisms that drive the development of progressive multiple sclerosis (MS), although inflammatory factors, such as macrophage migration inhibitory factor (MIF), its homolog D-dopachrome tautomerase (D-DT), and their common receptor CD74 may contribute to disease worsening. Our findings demonstrate elevated MIF and D-DT levels in males with progressive disease compared with relapsing-remitting males (RRMS) and female MS subjects, with increased levels of CD74 in females vs. males with high MS disease severity. Furthermore, increased MIF and D-DT levels in males with progressive disease were significantly correlated with the presence of two high-expression promoter polymorphisms located in the MIF gene, a −794CATT5–8 microsatellite repeat and a −173 G/C SNP. Conversely, mice lacking MIF or D-DT developed less-severe signs of experimental autoimmune encephalomyelitis, a murine model of MS, thus implicating both homologs as copathogenic contributors. These findings indicate that genetically controlled high MIF expression (and D-DT) promotes MS progression in males, suggesting that these two factors are sex-specific disease modifiers and raising the possibility that aggressive anti-MIF treatment of clinically isolated syndrome or RRMS males with a high-expresser genotype might slow or prevent the onset of progressive MS. Additionally, selective targeting of MIF:CD74 signaling might provide an effective, trackable therapeutic approach for MS subjects of both sexes.