Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4,478 result(s) for "Magmatism."
Sort by:
Chemical characteristics of paleozoic and mesozoic graywackes and sandstones from Central Europe
During the Variscan orogeny in Central Europe, partial melting in the lower continental crust formed granitic magmas, which intruded into the upper crust and left compounds of Ca (plus [Eu.sup.2+]), Mg, etc. in the lower crust. From the late Paleozoic decomposition of the tonalitic upper crust, sedimentary graywackes were produced reflecting the composition of this crust. The repeated reworking of the sedimentary cover caused the formation of sands. Sandstones as their products of consolidation contain increasing fractions of quartz and decreasing feldspar from Carboniferous and Triassic to Cretaceous age. A distinct negative Eu anomaly characterizes the majority of these rocks. The latter is imprinted by the Variscan magmatism. Quartz as used for numerous Medieval wood ash glasses is marked for its Central European origin by a distinct negative Eu anomaly in contrast to many soda glasses produced outside Germany mostly with a small or none Eu anomaly.
Ar/sup.39Ar age of gold mineralization of the Malomyr deposit
Reliable age estimation was obtained originally in this study for gold mineralization of the Malomyr deposit (the eastern part of the Mongolian-Okhotsk foldbelt), which is one of the most well-known deposits in the Russian Far East. The data obtained show that the age of hydrothermal process that resulted in the formation of the Malomyr deposit may be estimated as ~133-132 Ma. Data on magmatism of the same age within the considered region are absent. In the opinion of the authors, mobilization, redistribution of the ore material, and the formation of the Malomyr deposit were mostly controlled by dislocation processes accompanied by hydrothermal activity, which is supported by the results of structural studies.