Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
348,850
result(s) for
"Magnetic resonance imaging"
Sort by:
Handbook of MRI pulse sequences
by
Bernstein, Matt A
,
King, Kevin Franklin
,
Zhou, Xiaohong Joe
in
Magnetic resonance imaging
,
Magnetic resonance imaging - Mathematical models - Handbooks, manuals, etc
,
Magnetic resonance imaging -- Handbooks, manuals, etc
2004
Magnetic Resonance Imaging (MRI) is among the most important medical imaging techniques available today. There is an installed base of approximately 15,000 MRI scanners worldwide. Each of these scanners is capable of running many different \"pulse sequences\", which are governed by physics and engineering principles, and implemented by software programs that control the MRI hardware. To utilize an MRI scanner to the fullest extent, a conceptual understanding of its pulse sequences is crucial. This book offers a complete guide that can help the scientists, engineers, clinicians, and technologists in the field of MRI understand and better employ their scanner. ·Explains pulse sequences, their components, and the associated image reconstruction methods commonly used in MRI·Provides self-contained sections for individual techniques·Can be used as a quick reference guide or as a resource for deeper study·Includes both non-mathematical and mathematical descriptions ·Contains numerous figures, tables, references, and worked example problems
The new mind readers : what neuroimaging can and cannot reveal about our thoughts
The ability to read minds has long been a fascination of science fiction, but revolutionary new brain-imaging methods are bringing it closer to scientific reality. The New Mind Readers provides a compelling look at the origins, development, and future of these extraordinary tools, revealing how they are increasingly being used to decode our thoughts and experiences--and how this raises sometimes troubling questions about their application in domains such as marketing, politics, and the law. Russell Poldrack takes readers on a journey of scientific discovery, telling the stories of the visionaries behind these breakthroughs. Along the way, he gives an insider's perspective on what is perhaps the single most important technology in cognitive neuroscience today--functional magnetic resonance imaging, or fMRI, which is providing astonishing new insights into the contents and workings of the mind. He highlights both the amazing power and major limitations of these techniques and describes how applications outside the lab often exceed the bounds of responsible science. Poldrack also details the unique and sometimes disorienting experience of having his own brain scanned more than a hundred times as part of a landmark study of how human brain function changes over time. Written by one of the world's leading pioneers in the field, The New Mind Readers cuts through the hype and misperceptions surrounding these emerging new methods, offering needed perspective on what they can and cannot do--and demonstrating how they can provide new answers to age-old questions about the nature of consciousness and what it means to be human. -- Inside jacket flap.
Amygdalar nuclei and hippocampal subfields on MRI: Test-retest reliability of automated volumetry across different MRI sites and vendors
by
Richardson, Jill C.
,
Marizzoni, Moira
,
Picco, Agnese
in
[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging
,
Adult
,
Aged
2020
The amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and that of their smaller nuclei/subfields in multicenter datasets is time consuming and difficult due to the low contrast of standard MRI. Here, we assessed the reliability of the automated segmentation of amygdalar nuclei and hippocampal subfields across sites and vendors using FreeSurfer in two independent cohorts of older and younger healthy adults.
Sixty-five healthy older (cohort 1) and 68 younger subjects (cohort 2), from the PharmaCog and CoRR consortia, underwent repeated 3D-T1 MRI (interval 1–90 days). Segmentation was performed using FreeSurfer v6.0. Reliability was assessed using volume reproducibility error (ε) and spatial overlapping coefficient (DICE) between test and retest session.
Significant MRI site and vendor effects (p < .05) were found in a few subfields/nuclei for the ε, while extensive effects were found for the DICE score of most subfields/nuclei. Reliability was strongly influenced by volume, as ε correlated negatively and DICE correlated positively with volume size of structures (absolute value of Spearman’s r correlations >0.43, p < 1.39E-36). In particular, volumes larger than 200 mm3 (for amygdalar nuclei) and 300 mm3 (for hippocampal subfields, except for molecular layer) had the best test-retest reproducibility (ε < 5% and DICE > 0.80).
Our results support the use of volumetric measures of larger amygdalar nuclei and hippocampal subfields in multisite MRI studies. These measures could be useful for disease tracking and assessment of efficacy in drug trials.
•Differences in MRI site/vendor had a limited effect on volume reproducibility.•Differences in MRI site/vendor had an extensive effect on spatial accuracy.•Reliability is good for larger amygdalar and hippocampal structures.•Automated volumetry is reliable in multicenter MRI studies.
Journal Article
European society of urogenital radiology (ESUR) guidelines: MR imaging of pelvic endometriosis
2017
Endometriosis is a common gynaecological condition of unknown aetiology that primarily affects women of reproductive age. The accepted first-line imaging modality is pelvic ultrasound. However, magnetic resonance imaging (MRI) is increasingly performed as an additional investigation in complex cases and for surgical planning. There is currently no international consensus regarding patient preparation, MRI protocols or reporting criteria. Our aim was to develop clinical guidelines for MRI evaluation of pelvic endometriosis based on literature evidence and consensus expert opinion. This work was performed by a group of radiologists from the European Society of Urogenital Radiology (ESUR), experts in gynaecological imaging and a gynaecologist expert in methodology. The group discussed indications for MRI, technical requirements, patient preparation, MRI protocols and criteria for the diagnosis of pelvic endometriosis on MRI. The expert panel proposed a final recommendation for each criterion using Oxford Centre for Evidence Based Medicine (OCEBM) 2011 levels of evidence.
Key Points
•
This report provides guidelines for MRI in endometriosis
.
•
Minimal and optimal MRI acquisition protocols are provided
.
•
Recommendations are proposed for patient preparation
,
best MRI sequences and reporting criteria
.
Journal Article
A low-cost and shielding-free ultra-low-field brain MRI scanner
2021
Magnetic resonance imaging is a key diagnostic tool in modern healthcare, yet it can be cost-prohibitive given the high installation, maintenance and operation costs of the machinery. There are approximately seven scanners per million inhabitants and over 90% are concentrated in high-income countries. We describe an ultra-low-field brain MRI scanner that operates using a standard AC power outlet and is low cost to build. Using a permanent 0.055 Tesla Samarium-cobalt magnet and deep learning for cancellation of electromagnetic interference, it requires neither magnetic nor radiofrequency shielding cages. The scanner is compact, mobile, and acoustically quiet during scanning. We implement four standard clinical neuroimaging protocols (T1- and T2-weighted, fluid-attenuated inversion recovery like, and diffusion-weighted imaging) on this system, and demonstrate preliminary feasibility in diagnosing brain tumor and stroke. Such technology has the potential to meet clinical needs at point of care or in low and middle income countries.
A low cost MRI scanner may have the potential to meet clinical needs at point of care or in low and middle income countries. Here the authors describe a low cost 0.055 Tesla MRI scanner that operates using a standard AC power outlet, and demonstrate its preliminary feasibility in diagnosing brain tumor and stroke.
Journal Article
Harmonization of cortical thickness measurements across scanners and sites
2018
With the proliferation of multi-site neuroimaging studies, there is a greater need for handling non-biological variance introduced by differences in MRI scanners and acquisition protocols. Such unwanted sources of variation, which we refer to as “scanner effects”, can hinder the detection of imaging features associated with clinical covariates of interest and cause spurious findings. In this paper, we investigate scanner effects in two large multi-site studies on cortical thickness measurements across a total of 11 scanners. We propose a set of tools for visualizing and identifying scanner effects that are generalizable to other modalities. We then propose to use ComBat, a technique adopted from the genomics literature and recently applied to diffusion tensor imaging data, to combine and harmonize cortical thickness values across scanners. We show that ComBat removes unwanted sources of scan variability while simultaneously increasing the power and reproducibility of subsequent statistical analyses. We also show that ComBat is useful for combining imaging data with the goal of studying life-span trajectories in the brain.
•Cortical thickness (CT) measurements are highly scanner specific.•Identifying scanner effects is crucial for inference and biomarker development.•We propose to use ComBat to harmonize cortical thickness values across scanners.
Journal Article
Magnetic resonance linear accelerator technology and adaptive radiation therapy: An overview for clinicians
2022
Radiation therapy (RT) continues to play an important role in the treatment of cancer. Adaptive RT (ART) is a novel method through which RT treatments are evolving. With the ART approach, computed tomography or magnetic resonance (MR) images are obtained as part of the treatment delivery process. This enables the adaptation of the irradiated volume to account for changes in organ and/or tumor position, movement, size, or shape that may occur over the course of treatment. The advantages and challenges of ART maybe somewhat abstract to oncologists and clinicians outside of the specialty of radiation oncology. ART is positioned to affect many different types of cancer. There is a wide spectrum of hypothesized benefits, from small toxicity improvements to meaningful gains in overall survival. The use and application of this novel technology should be understood by the oncologic community at large, such that it can be appropriately contextualized within the landscape of cancer therapies. Likewise, the need to test these advances is pressing. MR-guided ART (MRgART) is an emerging, extended modality of ART that expands upon and further advances the capabilities of ART. MRgART presents unique opportunities to iteratively improve adaptive image guidance. However, although the MRgART adaptive process advances ART to previously unattained levels, it can be more expensive, time-consuming, and complex. In this review, the authors present an overview for clinicians describing the process of ART and specifically MRgART.
Journal Article
Portable, bedside, low-field magnetic resonance imaging for evaluation of intracerebral hemorrhage
2021
Radiological examination of the brain is a critical determinant of stroke care pathways. Accessible neuroimaging is essential to detect the presence of intracerebral hemorrhage (ICH). Conventional magnetic resonance imaging (MRI) operates at high magnetic field strength (1.5–3 T), which requires an access-controlled environment, rendering MRI often inaccessible. We demonstrate the use of a low-field MRI (0.064 T) for ICH evaluation. Patients were imaged using conventional neuroimaging (non-contrast computerized tomography (CT) or 1.5/3 T MRI) and portable MRI (pMRI) at Yale New Haven Hospital from July 2018 to November 2020. Two board-certified neuroradiologists evaluated a total of 144 pMRI examinations (56 ICH, 48 acute ischemic stroke, 40 healthy controls) and one ICH imaging core lab researcher reviewed the cases of disagreement. Raters correctly detected ICH in 45 of 56 cases (80.4% sensitivity, 95%CI: [0.68–0.90]). Blood-negative cases were correctly identified in 85 of 88 cases (96.6% specificity, 95%CI: [0.90–0.99]). Manually segmented hematoma volumes and ABC/2 estimated volumes on pMRI correlate with conventional imaging volumes (ICC = 0.955,
p
= 1.69e-30 and ICC = 0.875,
p
= 1.66e-8, respectively). Hematoma volumes measured on pMRI correlate with NIH stroke scale (NIHSS) and clinical outcome (mRS) at discharge for manual and ABC/2 volumes. Low-field pMRI may be useful in bringing advanced MRI technology to resource-limited settings.
Conventional magnetic resonance imaging (MRI) operates at a high magnetic field strength and requires a strict access-controlled environment, making MRI often inaccessible. Here, the authors present a portable low-field MRI device that detects intracerebral hemorrhage with high accuracy.
Journal Article
Genomics of perivascular space burden unravels early mechanisms of cerebral small vessel disease
by
Okawa, Masakazu
,
Yoshida, Kazumichi
,
Armstrong, Nicola J.
in
631/208/205/2138
,
692/617
,
692/617/375/1370/534
2023
Perivascular space (PVS) burden is an emerging, poorly understood, magnetic resonance imaging marker of cerebral small vessel disease, a leading cause of stroke and dementia. Genome-wide association studies in up to 40,095 participants (18 population-based cohorts, 66.3 ± 8.6 yr, 96.9% European ancestry) revealed 24 genome-wide significant PVS risk loci, mainly in the white matter. These were associated with white matter PVS already in young adults (
N
= 1,748; 22.1 ± 2.3 yr) and were enriched in early-onset leukodystrophy genes and genes expressed in fetal brain endothelial cells, suggesting early-life mechanisms. In total, 53% of white matter PVS risk loci showed nominally significant associations (27% after multiple-testing correction) in a Japanese population-based cohort (
N
= 2,862; 68.3 ± 5.3 yr). Mendelian randomization supported causal associations of high blood pressure with basal ganglia and hippocampal PVS, and of basal ganglia PVS and hippocampal PVS with stroke, accounting for blood pressure. Our findings provide insight into the biology of PVS and cerebral small vessel disease, pointing to pathways involving extracellular matrix, membrane transport and developmental processes, and the potential for genetically informed prioritization of drug targets.
Genomic analyses of large population-based cohorts uncover the genetic determinants of perivascular space burden, an MRI marker of cerebral small vessel disease, across the lifespan, and reveal potential pathways implicated in the etiology of stroke and dementia.
Journal Article