Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
880,592
result(s) for
"Magnetics"
Sort by:
Transcranial Magnetic Stimulation (TMS) Safety with Respect to Seizures: A Literature Review
by
Pawlowska-Wajswol, Sylvia
,
Stultz, Debra J
,
Osburn, Savanna
in
Alcohol use
,
Bipolar disorder
,
Care and treatment
2020
Transcranial magnetic stimulation is an increasingly popular FDA-approved treatment for resistant depression, migraines, and OCD. Research is also underway for its use in various other psychiatric and medical disorders. Although rare, seizures are a potential adverse event of TMS treatment. In this article, we discuss TMS-related seizures with the various coils used to deliver TMS, the risk factors associated with seizures, the differential diagnosis of its presentations, the effects of sleep deprivation and alcohol use on seizures, as well as seizure risks with protocols for traditional TMS, theta-burst stimulation, and accelerated TMS. A discussion is presented comparing the potential risk of seizures with various psychotropic medications versus TMS. Included are case reports of TMS seizures in the child/adolescent patient, bipolar disorder patients, patients with a history of a traumatic brain injury, and those with epilepsy. Reports are also shared on TMS use without seizures in patients with a history of head injuries and TMS's continued use if patients have a seizure during their TMS treatment. Findings generated in this review suggest the following. Seizures, if present, are usually self-limiting. Most treatment recommendations for TMS-related seizures are supportive in nature. The risk of TMS-related seizures is <1% overall. TMS has successfully been used in patients with epilepsy, traumatic brain injuries, and those with a prior TMS-related seizure. The rate of TMS-related seizures is comparable to that of most psychotropic medications. While having a seizure is a rare but serious adverse effect of TMS, the benefits of treating refractory depression with TMS may outweigh the risk of suicidal ideation and other significant complications of depression.
Journal Article
Handbook of MRI pulse sequences
by
Bernstein, Matt A
,
King, Kevin Franklin
,
Zhou, Xiaohong Joe
in
Magnetic resonance imaging
,
Magnetic resonance imaging - Mathematical models - Handbooks, manuals, etc
,
Magnetic resonance imaging -- Handbooks, manuals, etc
2004
Magnetic Resonance Imaging (MRI) is among the most important medical imaging techniques available today. There is an installed base of approximately 15,000 MRI scanners worldwide. Each of these scanners is capable of running many different \"pulse sequences\", which are governed by physics and engineering principles, and implemented by software programs that control the MRI hardware. To utilize an MRI scanner to the fullest extent, a conceptual understanding of its pulse sequences is crucial. This book offers a complete guide that can help the scientists, engineers, clinicians, and technologists in the field of MRI understand and better employ their scanner.
·Explains pulse sequences, their components, and the associated image reconstruction methods commonly used in MRI·Provides self-contained sections for individual techniques·Can be used as a quick reference guide or as a resource for deeper study·Includes both non-mathematical and mathematical descriptions ·Contains numerous figures, tables, references, and worked example problems
Applied Frequency-Domain Electromagnetics
Understanding electromagnetic wave theory is pivotal in the design of antennas, microwave circuits, radars, and imaging systems. Researchers behind technology advances in these and other areas need to understand both the classical theory of electromagnetics as well as modern and emerging techniques of solving Maxwell's equations. To this end, the book provides a graduate-level treatment of selected analytical and computational methods. The analytical methods include the separation of variables, perturbation theory, Green's functions, geometrical optics, the geometrical theory of diffraction, physical optics, and the physical theory of diffraction. The numerical techniques include mode matching, the method of moments, and the finite element method. The analytical methods provide physical insights that are valuable in the design process and the invention of new devices. The numerical methods are more capable of treating general and complex structures. Together, they form a basis for modern electromagnetic design. The level of presentation allows the reader to immediately begin applying the methods to some problems of moderate complexity. It also provides explanations of the underlying theories so that their capabilities and limitations can be understood.
Frequency drift in MR spectroscopy at 3T
by
Dydak, Ulrike
,
Yeung, David K.W.
,
Swinnen, Stephan P.
in
Bandwidths
,
Brain - diagnostic imaging
,
Brain - metabolism
2021
Heating of gradient coils and passive shim components is a common cause of instability in the B0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites.
A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC).
Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p < 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI.
This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed.
Journal Article
One-Dimensional Magnetic FeCoNi Alloy Toward Low-Frequency Electromagnetic Wave Absorption
2022
HighlightsA novel FeCoNi carbon fiber (FeCoNi/CF) is obtained through an improved electrospinning technology, which greatly endows the fiber with strong magnetic property.The FeCoNi/CF exhibits an enhanced electromagnetic loss capability due to the construction of one-dimensional magnetic FeCoNi alloy.The designed one-dimensional FeCoNi/CF exhibits excellent performance, with a broad effective absorption band of 1.3 GHz in the low-frequency electromagnetic field at an ultrathin thickness of 2 mm, which provides a great potential for practical application in the future.Rational designing of one-dimensional (1D) magnetic alloy to facilitate electromagnetic (EM) wave attenuation capability in low-frequency (2–6 GHz) microwave absorption field is highly desired but remains a significant challenge. In this study, a composite EM wave absorber made of a FeCoNi medium-entropy alloy embedded in a 1D carbon matrix framework is rationally designed through an improved electrospinning method. The 1D-shaped FeCoNi alloy embedded composite demonstrates the high-density and continuous magnetic network using off-axis electronic holography technique, indicating the excellent magnetic loss ability under an external EM field. Then, the in-depth analysis shows that many factors, including 1D anisotropy and intrinsic physical features of the magnetic medium-entropy alloy, primarily contribute to the enhanced EM wave absorption performance. Therefore, the fabricated EM wave absorber shows an increasing effective absorption band of 1.3 GHz in the low-frequency electromagnetic field at an ultrathin thickness of 2 mm. Thus, this study opens up a new method for the design and preparation of high-performance 1D magnetic EM absorbers.
Journal Article
High Magnetic Field Science and Its Application in the United States
by
States, Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United
,
Astronomy, Board on Physics and
,
Council, National Research
in
Magnetic fields
,
Magnetic resonance imaging
,
Magnetics
2013
The Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States was convened by the National Research Council in response to a request by the National Science Foundation. This report answers three questions: (1) What is the current state of high-field magnet science, engineering, and technology in the United States, and are there any conspicuous needs to be addressed? (2) What are the current science drivers and which scientific opportunities and challenges can be anticipated over the next ten years? (3) What are the principal existing and planned high magnetic field facilities outside of the United States, what roles have U.S. high field magnet development efforts played in developing those facilities, and what potentials exist for further international collaboration in this area?A magnetic field is produced by an electrical current in a metal coil. This current exerts an expansive force on the coil, and a magnetic field is \"high\" if it challenges the strength and current-carrying capacity of the materials that create the field. Although lower magnetic fields can be achieved using commercially available magnets, research in the highest achievable fields has been, and will continue to be, most often performed in large research centers that possess the materials and systems know-how for forefront research. Only a few high field centers exist around the world; in the United States, the principal center is the National High Magnetic Field Laboratory (NHMFL).High Magnetic Field Science and Its Application in the United States considers continued support for a centralized high-field facility such as NHFML to be the highest priority. This report contains a recommendation for the funding and siting of several new high field nuclear magnetic resonance magnets at user facilities in different regions of the United States. Continued advancement in high-magnetic field science requires substantial investments in magnets with enhanced capabilities. High Magnetic Field Science and Its Application in the United States contains recommendations for the further development of all-superconducting, hybrid, and higher field pulsed magnets that meet ambitious but achievable goals.
Constitutive relationship and governing physical properties for magnetophoresis
by
Ayansiji, Ayankola O.
,
Linninger, Andreas A.
,
Singh, Meenesh R.
in
Activity coefficients
,
Constitutive equations
,
Constitutive relationships
2020
Magnetophoresis is an important physical process with application to drug delivery, biomedical imaging, separation, and mixing. Other than empirically, little is known about how the magnetic field and magnetic properties of a solution affect the flux of magnetic particles. A comprehensive explanation of these effects on the transport of magnetic particles has not been developed yet. Here we formulate a consistent, constitutive equation for the magnetophoretic flux of magnetic nanoparticles suspended in a medium exposed to a stationary magnetic field. The constitutive relationship accounts for contributions from magnetic diffusion, magnetic convection, residual magnetization, and electromagnetic drift. We discovered that the key physical properties governing the magnetophoresis are magnetic diffusion coefficient, magnetic velocity, and activity coefficient, which depend on relative magnetic energy and the molar magnetic susceptibility of particles. The constitutive equation also reveals previously unknown ballistic and diffusive limits for magnetophoresis wherein the paramagnetic particles either aggregate near the magnet or diffusive away from the magnet, respectively. In the diffusive limit, the particle concentration is linearly proportional to the relative magnetic energy of the suspension of paramagnetic particles. The region of the localization of paramagnetic particles near the magnet decreases with increasing the strength of the magnet. The dynamic accumulation of nanoparticles, measured as the thickness of the nanoparticle aggregate, near the magnet compares well with the theoretical prediction. The effect of convective mixing on the rate of magnetophoresis is also discussed for the magnetic targeting applications.
Journal Article
Emergent Magnetic Phases in Pressure-Tuned van der Waals Antiferromagnet FePS3
by
Klotz, Stefan
,
Dang, Ngoc T
,
Coak, Matthew J
in
2-dimensional systems
,
Antiferromagnetism
,
antiferromagnets
2021
Layered van der Waals 2D magnetic materials are of great interest in fundamental condensed-matter physics research, as well as for potential applications in spintronics and device physics. We present neutron powder diffraction data using new ultrahigh-pressure techniques to measure the magnetic structure of Mott-insulating 2D honeycomb antiferromagnetFePS3at pressures up to 183 kbar and temperatures down to 80 K. These data are complemented by high-pressure magnetometry and reverse Monte Carlo modeling of the spin configurations. As pressure is applied, the previously measured ambient-pressure magnetic order switches from an antiferromagnetic to a ferromagnetic interplanar interaction and from 2D-like to 3D-like character. The overall antiferromagnetic structure within theabplanes, ferromagnetic chains antiferromagnetically coupled, is preserved, but the magnetic propagation vector is altered fromk=(0,1,12)tok=(0,1,0), a halving of the magnetic unit cell size. At higher pressures, coincident with the second structural transition and the insulator-metal transition in this compound, we observe a suppression of this long-range order and emergence of a form of magnetic short-range order which survives above room temperature. Reverse Monte Carlo fitting suggests this phase to be a short-ranged version of the original ambient-pressure structure—with the Fe moment size remaining of similar magnitude and with a return to antiferromagnetic interplanar correlations. The persistence of magnetism well into the HP-II metallic state is an observation in contradiction with previous x-ray spectroscopy results which suggest a spin-crossover transition.
Journal Article
A low-cost and shielding-free ultra-low-field brain MRI scanner
2021
Magnetic resonance imaging is a key diagnostic tool in modern healthcare, yet it can be cost-prohibitive given the high installation, maintenance and operation costs of the machinery. There are approximately seven scanners per million inhabitants and over 90% are concentrated in high-income countries. We describe an ultra-low-field brain MRI scanner that operates using a standard AC power outlet and is low cost to build. Using a permanent 0.055 Tesla Samarium-cobalt magnet and deep learning for cancellation of electromagnetic interference, it requires neither magnetic nor radiofrequency shielding cages. The scanner is compact, mobile, and acoustically quiet during scanning. We implement four standard clinical neuroimaging protocols (T1- and T2-weighted, fluid-attenuated inversion recovery like, and diffusion-weighted imaging) on this system, and demonstrate preliminary feasibility in diagnosing brain tumor and stroke. Such technology has the potential to meet clinical needs at point of care or in low and middle income countries.
A low cost MRI scanner may have the potential to meet clinical needs at point of care or in low and middle income countries. Here the authors describe a low cost 0.055 Tesla MRI scanner that operates using a standard AC power outlet, and demonstrate its preliminary feasibility in diagnosing brain tumor and stroke.
Journal Article
The Juno Magnetic Field Investigation
by
Malinnikova, A.
,
Odom, J.
,
Benn, M.
in
Aerospace Technology and Astronautics
,
Astronomical catalogs
,
Astrophysics and Astroparticles
2017
The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ∼20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of ’s three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno’s massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss =
1.6
×
10
6
nT
per axis) with a resolution of ∼0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of view and also provides a continuous record of radiation exposure. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors, and residual spacecraft fields and/or sensor offsets are monitored in flight taking advantage of Juno’s spin (nominally 2 rpm) to separate environmental fields from those that rotate with the spacecraft.
Journal Article