Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,393
result(s) for
"Magnetohydrodynamic turbulence"
Sort by:
On the structure and statistical theory of turbulence of extended magnetohydrodynamics
by
Miloshevich, George
,
Lingam, Manasvi
,
Morrison, Philip J
in
70 PLASMA PHYSICS AND FUSION TECHNOLOGY
,
absolute equilibrium
,
action principle
2017
Recent progress regarding the noncanonical Hamiltonian formulation of extended magnetohydrodynamics (XMHD), a model with Hall drift and electron inertia, is summarized. The advantages of the Hamiltonian approach are invoked to study some general properties of XMHD turbulence, and to compare them against their ideal MHD counterparts. For instance, the helicity flux transfer rates for XMHD are computed, and Liouville's theorem for this model is also verified. The latter is used, in conjunction with the absolute equilibrium states, to arrive at the spectra for the invariants, and to determine the direction of the cascades, e.g., generalizations of the well-known ideal MHD inverse cascade of magnetic helicity. After a similar analysis is conducted for XMHD by inspecting second order structure functions and absolute equilibrium states, a couple of interesting results emerge. When cross helicity is taken to be ignorable, the inverse cascade of injected magnetic helicity also occurs in the Hall MHD range-this is shown to be consistent with previous results in the literature. In contrast, in the inertial MHD range, viz at scales smaller than the electron skin depth, all spectral quantities are expected to undergo direct cascading. The consequences and relevance of our results in space and astrophysical plasmas are also briefly discussed.
Journal Article
On the Inertial Range Bounds of K-41-like Magnetohydrodynamics Turbulence
2022
The spectral slope of magnetohydrodynamic (MHD) turbulence varies depending on the spectral theory considered; −3/2 is the spectral slope in Kraichnan–Iroshnikov–Dobrowolny (KID) theory, −5/3 in Marsch–Matthaeus–Zhou and Goldreich–Sridhar theories, also called Kolmogorov-like (K-41-like) MHD theory, the combination of the −5/3 and −3/2 scales in Biskamp, and so on. A rigorous mathematical proof to any of these spectral theories is of great scientific interest. Motivated by the 2012 work of A. Biryuk and W. Craig (Physica D 241(2012) 426–438), we establish inertial range bounds for K-41-like phenomenon in MHD turbulent flow through a mathematical rigor; a range of wave numbers in which the spectral slope of MHD turbulence is proportional to −5/3 is established and the upper and lower bounds of this range are explicitly formulated. We also have shown that the Leray weak solution of the standard MHD model is bonded in the Fourier space, the spectral energy of the system is bounded and its average over time decreases in time.
Journal Article
MHD turbulence: a biased review
2022
This review of scaling theories of magnetohydrodynamic (MHD) turbulence aims to put the developments of the last few years in the context of the canonical time line (from Kolmogorov to Iroshnikov–Kraichnan to Goldreich–Sridhar to Boldyrev). It is argued that Beresnyak's (valid) objection that Boldyrev's alignment theory, at least in its original form, violates the Reduced-MHD rescaling symmetry can be reconciled with alignment if the latter is understood as an intermittency effect. Boldyrev's scalings, a version of which is recovered in this interpretation, and the concept of dynamic alignment (equivalently, local 3D anisotropy) are thus an example of a physical theory of intermittency in a turbulent system. The emergence of aligned structures naturally brings into play reconnection physics and thus the theory of MHD turbulence becomes intertwined with the physics of tearing, current-sheet disruption and plasmoid formation. Recent work on these subjects by Loureiro, Mallet et al. is reviewed and it is argued that we may, as a result, finally have a reasonably complete picture of the MHD turbulent cascade (forced, balanced, and in the presence of a strong mean field) all the way to the dissipation scale. This picture appears to reconcile Beresnyak's advocacy of the Kolmogorov scaling of the dissipation cutoff (as $\\mathrm {Re}^{3/4}$) with Boldyrev's aligned cascade. It turns out also that these ideas open the door to some progress in understanding MHD turbulence without a mean field – MHD dynamo – whose saturated state is argued to be controlled by reconnection and to contain, at small scales, a tearing-mediated cascade similar to its strong-mean-field counterpart (this is a new result). On the margins of this core narrative, standard weak-MHD-turbulence theory is argued to require some adjustment – and a new scheme for such an adjustment is proposed – to take account of the determining part that a spontaneously emergent 2D condensate plays in mediating the Alfvén-wave cascade from a weakly interacting state to a strongly turbulent (critically balanced) one. This completes the picture of the MHD cascade at large scales. A number of outstanding issues are surveyed: imbalanced turbulence (for which a new, tentative theory is proposed), residual energy, MHD turbulence at subviscous scales, and decaying MHD turbulence (where there has been dramatic progress recently, and reconnection again turned out to feature prominently). Finally, it is argued that the natural direction of research is now away from the fluid MHD theory and into kinetic territory – and then, possibly, back again. The review lays no claim to objectivity or completeness, focusing on topics and views that the author finds most appealing at the present moment.
Journal Article
Fast plasmoid-mediated reconnection in a solar flare
by
Jiang, Chaowei
,
Song, Yongliang
,
Feng, Xueshang
in
639/33/525/870
,
639/766/525/870
,
Current sheets
2022
Magnetic reconnection is a multi-faceted process of energy conversion in astrophysical, space and laboratory plasmas that operates at microscopic scales but has macroscopic drivers and consequences. Solar flares present a key laboratory for its study, leaving imprints of the microscopic physics in radiation spectra and allowing the macroscopic evolution to be imaged, yet a full observational characterization remains elusive. Here we combine high resolution imaging and spectral observations of a confined solar flare at multiple wavelengths with data-constrained magnetohydrodynamic modeling to study the dynamics of the flare plasma from the current sheet to the plasmoid scale. The analysis suggests that the flare resulted from the interaction of a twisted magnetic flux rope surrounding a filament with nearby magnetic loops whose feet are anchored in chromospheric fibrils. Bright cusp-shaped structures represent the region around a reconnecting separator or quasi-separator (hyperbolic flux tube). The fast reconnection, which is relevant for other astrophysical environments, revealed plasmoids in the current sheet and separatrices and associated unresolved turbulent motions.
Solar flares provide wide range of observational details about fundamental processes involved. Here, the authors show evidence for magnetic reconnection in a strong confined solar flare displaying all four reconnection flows with plasmoids in the current sheet and the separatrices.
Journal Article
The Solar Wind as a Turbulence Laboratory
2013
In this review we will focus on a topic of fundamental importance for both astrophysics and plasma physics, namely the occurrence of large-amplitude low-frequency fluctuations of the fields that describe the plasma state. This subject will be treated within the context of the expanding solar wind and the most meaningful advances in this research field will be reported emphasizing the results obtained in the past decade or so. As a matter of fact, Helios inner heliosphere and Ulysses’ high latitude observations, recent multi-spacecrafts measurements in the solar wind (Cluster four satellites) and new numerical approaches to the problem, based on the dynamics of complex systems, brought new important insights which helped to better understand how turbulent fluctuations behave in the solar wind. In particular, numerical simulations within the realm of magnetohydrodynamic (MHD) turbulence theory unraveled what kind of physical mechanisms are at the basis of turbulence generation and energy transfer across the spectral domain of the fluctuations. In other words, the advances reached in these past years in the investigation of solar wind turbulence now offer a rather complete picture of the phenomenological aspect of the problem to be tentatively presented in a rather organic way.
Journal Article
Magnetic reconnection: MHD theory and modelling
by
Priest, Eric R.
,
Pontin, David I.
in
Astronomy
,
Astrophysics and Astroparticles
,
Astrophysics and Cosmology
2022
In this review we focus on the fundamental theory of magnetohydrodynamic reconnection, together with applications to understanding a wide range of dynamic processes in the solar corona, such as flares, jets, coronal mass ejections, the solar wind and coronal heating. We summarise only briefly the related topics of collisionless reconnection, non-thermal particle acceleration, and reconnection in systems other than the corona. We introduce several preliminary topics that are necessary before the subtleties of reconnection can be fully described: these include null points (Sects.
2.1
–
2.2
), other topological and geometrical features such as separatrices, separators and quasi-separatrix layers (Sects.
2.3
,
2.6
), the conservation of magnetic flux and field lines (Sect.
3
), and magnetic helicity (Sect.
4.6
). Formation of current sheets in two- and three-dimensional fields is reviewed in Sect.
5
. These set the scene for a discussion of the definition and properties of reconnection in three dimensions that covers the conditions for reconnection, the failure of the concept of a flux velocity, the nature of diffusion, and the differences between two-dimensional and three-dimensional reconnection (Sect.
4
). Classical 2D models are briefly presented, including magnetic annihilation (Sect.
6
), slow and fast regimes of steady reconnection (Sect.
7
), and non-steady reconnection such as the tearing mode (Sect.
8
). Then three routes to fast reconnection in a collisional or collisionless medium are described (Sect.
9
). The remainder of the review is dedicated to our current understanding of how magnetic reconnection operates in three dimensions and in complex magnetic fields such as that of the Sun’s corona. In Sects.
10
–
12
,
14.1
the different regimes of reconnection that are possible in three dimensions are summarised, including at a null point, separator, quasi-separator or a braid. The role of 3D reconnection in solar flares (Sect.
13
) is reviewed, as well as in coronal heating (Sect.
14
), and the release of the solar wind (Sect.
15.2
). Extensions including the role of reconnection in the magnetosphere (Sect.
15.3
), the link between reconnection and turbulence (Sect.
16
), and the role of reconnection in particle acceleration (Sect.
17
) are briefly mentioned.
Journal Article
Synchronization to Big Data: Nudging the Navier-Stokes Equations for Data Assimilation of Turbulent Flows
by
Biferale, Luca
,
Mazzino, Andrea
,
Clark Di Leoni, Patricio
in
Algorithms
,
Atmospheric models
,
Computational fluid dynamics
2020
Nudging is an important data assimilation technique where partial field measurements are used to control the evolution of a dynamical system and/or to reconstruct the entire phase-space configuration of the supplied flow. Here, we apply it to the canonical problem of fluid dynamics: three-dimensional homogeneous and isotropic turbulence. By doing numerical experiments we perform a systematic assessment of how well the technique reconstructs large- and small-scale features of the flow with respect to the quantity and the quality or type of data supplied to it. The types of data used are (i) field values on a fixed number of spatial locations (Eulerian nudging), (ii) Fourier coefficients of the fields on a fixed range of wave numbers (Fourier nudging), or (iii) field values along a set of moving probes inside the flow (Lagrangian nudging). We present state-of-the-art quantitative measurements of the scale-by-scale transition to synchronization and a detailed discussion of the probability distribution function of the reconstruction error, by comparing the nudged field and the truth point by point. Furthermore, we show that for more complex flow configurations, like the case of anisotropic rotating turbulence, the presence of cyclonic and anticyclonic structures leads to unexpectedly better performances of the algorithm. We discuss potential further applications of nudging to a series of applied flow configurations, including the problem of field reconstruction in thermal Rayleigh-Bénard convection and in magnetohydrodynamics, and to the determination of optimal parametrization for small-scale turbulent modeling. Our study fixes the standard requirements for future applications of nudging to complex turbulent flows.
Journal Article
Time-resolved turbulent dynamo in a laser plasma
by
Li, Chikang
,
Remington, Bruce A.
,
Kunz, Matthew W.
in
70 PLASMA PHYSICS AND FUSION TECHNOLOGY
,
Astronomy
,
Flow velocity
2021
Understanding magnetic-field generation and amplification in turbulent plasma is essential to account for observations of magnetic fields in the universe. A theoretical framework attributing the origin and sustainment of these fields to the so-called fluctuation dynamo was recently validated by experiments on laser facilities in low-magnetic-Prandtl-number plasmas (Pm < 1). However, the same framework proposes that the fluctuation dynamo should operate differently when Pm ≳ 1, the regime relevant to many astrophysical environments such as the intracluster medium of galaxy clusters. This paper reports an experiment that creates a laboratory Pm ≳ 1 plasma dynamo. We provide a time-resolved characterization of the plasma’s evolution, measuring temperatures, densities, flow velocities, and magnetic fields, which allows us to explore various stages of the fluctuation dynamo’s operation on seed magnetic fields generated by the action of the Biermann-battery mechanism during the initial drive-laser target interaction. The magnetic energy in structures with characteristic scales close to the driving scale of the stochastic motions is found to increase by almost three orders of magnitude and saturate dynamically. It is shown that the initial growth of these fields occurs at a much greater rate than the turnover rate of the driving-scale stochastic motions. Our results point to the possibility that plasma turbulence produced by strong shear can generate fields more efficiently at the driving scale than anticipated by idealized magnetohydrodynamics (MHD) simulations of the nonhelical fluctuation dynamo; this finding could help explain the large-scale fields inferred from observations of astrophysical systems.
Journal Article
Reconciling solar and stellar magnetic cycles with nonlinear dynamo simulations
2017
The magnetic fields of solar-type stars are observed to cycle over decadal periods—11 years in the case of the Sun. The fields originate in the turbulent convective layers of stars and have a complex dependency upon stellar rotation rate. We have performed a set of turbulent global simulations that exhibit magnetic cycles varying systematically with stellar rotation and luminosity. We find that the magnetic cycle period is inversely proportional to the Rossby number, which quantifies the influence of rotation on turbulent convection. The trend relies on a fundamentally nonlinear dynamo process and is compatible with the Sun’s cycle and those of other solar-type stars.
Journal Article
Kilohertz quasiperiodic oscillations in short gamma-ray bursts
by
Dichiara, Simone
,
Lien, Amy
,
Preece, Robert
in
639/33/34/4118
,
639/33/34/4123
,
639/33/34/4127
2023
Short gamma-ray bursts (GRBs) are associated with binary neutron star mergers, which are multimessenger astronomical events that have been observed both in gravitational waves and in the multiband electromagnetic spectrum
1
. Depending on the masses of the stars in the binary and on details of their largely unknown equation of state, a dynamically evolving and short-lived neutron star may be formed after the merger, existing for approximately 10–300 ms before collapsing to a black hole
2
,
3
. Numerical relativity simulations across different groups consistently show broad power spectral features in the 1–5-kHz range in the post-merger gravitational-wave signal
4
–
14
, which is inaccessible by current gravitational-wave detectors but could be seen by future third-generation ground-based detectors in the next decade
15
–
17
. This implies the possibility of quasiperiodic modulation of the emitted gamma rays in a subset of events in which a neutron star is formed shortly before the final collapse to a black hole
18
–
21
. Here we present two such signals identified in the short bursts GRB 910711 and GRB 931101B from archival Burst and Transient Source Experiment (BATSE) data, which are compatible with the predictions from numerical relativity.
Two signals identified in short gamma-ray bursts from archival Burst and Transient Source Experiment data show kilohertz quasiperiodic oscillations, implying the ringing of a hypermassive neutron star before collapsing to a black hole.
Journal Article