Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
968 result(s) for "Magnolias."
Sort by:
Assessment of quality in volatile oil from three basic sources of Xinyi from Hubei by anatomy, GC-MS, and chemometric methods
“Xinyi” ( Magnolia biondii Pampan., Magnolia denudata Desr., and Magnolia sprengeri Pampan.) is a traditional Chinese medicine listed in the Pharmacopoeia of the People’s Republic of China. “Xinyi” has anti-inflammatory, anti-allergic, antioxidant, and antibacterial effects, and has significant curative effects in the treatment of acute and chronic rhinitis, allergic rhinitis, and other rhinitis symptoms. However, comparative quality assessments of these three species are scarce. This study investigated the variations in the volatile oil content and composition in the flower buds of M. biondii , M. denudata , and M. sprengeri using the gas chromatography–mass spectrometry (GC–MS) and the microscopic analysis at different growth stages. This study indicated the following findings. (1) The volatile oil levels varied among the species, with M. biondii , M. denudata , and M. sprengeri peaking, respectively. In addition, the cell density was positively correlated with the oil deposition. (2) The content of 1,8-Cineole varied significantly, where M. biondii exhibited the high levels at 14.50% at stage 4 and 16.40% at stage 5; M. denudata peaked at 17.87% at stage 5; and M. sprengeri was 1.07% at stage 3. Moreover, M. biondii and M. denudata from Hubei exceeded the Pharmacopoeia’s 1% standard, whereas M. sprengeri did not. These findings underscore the need to improve the herb production standards and provide valuable data for assessing the therapeutic potential of these “Xinyi” species.
Phytochemical Analysis and Specific Activities of Bark and Flower Extracts from Four Magnolia Plant Species
This study rigorously investigates the bioactive properties and characteristics of extracts derived from the flowers and bark of four distinct Magnolia species: Magnolia champaca, Magnolia denudata, Magnolia grandiflora and Magnolia officinalis. The primary objective is to evaluate the potential application of these extracts in cosmetics and other relevant industries. We used ethanol to extract compounds from these plants and conducted various tests, including spectrophotometry, HPLC, GC-MS, and microbiological analyses. The extracts, particularly rich in polyphenols (55.18 mg GAE/g), displayed significant antioxidant capabilities, with IC 50 values ranging between 9.99 mg/mL and 23.23 mg/mL. We quantified different compounds: phenolic acids (6.259 to 27.883 mg/g dry weight), aglycone flavonoids (61.224 to 135.788 mg/g dw), glycosidic flavonoids (17.265 to 57.961 mg/g dw), and lignans (150.071 to 374.902 mg/g dw). We identified 76 volatile compounds, predominantly oxygenated monoterpenes and sesquiterpene hydrocarbons, which contribute to the antibacterial effectiveness of the extracts. These extracts showed greater inhibitory potential against Gram-negative bacteria than Gram-positive bacteria. The diverse chemical compounds and their demonstrated activities suggest these extracts could be valuable in the cosmetics industry, pharmaceutical industry, or other industries.
Taxonomic novelties in Magnolia-associated pleosporalean fungi in the Kunming Botanical Gardens (Yunnan, China)
This paper represents the first article in a series on Yunnanese microfungi. We herein provide insights into Magnolia species associated with microfungi. All presented data are reported from the Kunming Botanical Gardens. Final conclusions were derived from the morphological examination of specimens coupled with phylogenetic sequence data to better integrate taxa into appropriate taxonomic ranks and infer their relationships. Shearia formosa, the type species of Shearia, lacks type material, and its phylogenetic position accordingly remains unresolved. A fresh collection of Shearia formosa, obtained from Magnolia denudata and M. soulangeana in China, therefore, designated a neotype for stabilizing the application of the species and/or genus name. Phylogenetic analyses of a combined DNA data matrix containing SSU, LSU, RPB2 and TEF loci of representative Pleosporales revealed that the genera Crassiperidium, Longiostiolum and Shearia are a well-defined monophylum. It is recognized as the family Longiostiolaceae and strongly supported by Bayesian and Maximum Likelihood methods. Its members are characterized by immersed to semi-immersed, globose to subglobose ascomata with a central, periphysate ostiole, a peridium composed of rectangular to polygonal cells, cylindrical to clavate asci, broadly fusiform, hyaline to pale brown ascospores, a coelomycetous asexual morph with pycnidial conidiomata, enteroblastic, annellidic, ampulliform, doliiform or cylindrical conidiogenous cells and cylindrical to fusiform, transverse and sometimes laterally distoseptate conidia without a sheath or with a basal lateral sheath. Nigrograna magnoliae sp. nov. is introduced from Magnolia denudata with both asexual and sexual morphs. We observed the asexual morph of Brunneofusispora sinensis from the culture and therefore amended the generic and species descriptions of Brunneofusispora.
Integrative analyses of the transcriptome and metabolome reveal comprehensive mechanisms of monolignol biosynthesis in response to bioclimatic factors in Magnolia officinalis
Background Magnolia officinalis ( M. officinalis) thrives in temperate, elevated regions, and its desiccated bark comprises medicinal monolignol. Both abiotic and biotic factors can influence the pharmacodynamic compounds of M. officinalis , which display a variety of capabilities. It was the goal of this study to find the main bioclimatic factors that impact the amount of helpful compounds in M. officinalis and to show how these bioclimatic factors influence the metabolic pathways of magnolol and honokiol through actions on transcripts and molecules. We assessed the amounts of medicinal compounds in M. officinalis from Baoxing (BX), Nanjiang (NJ), Xuanhan (XH), and Beichuan (BC) in Sichuan Province. After that, the bioclimatic factors were gathered and put together that affected the growth and used the transcriptome and metabolome to label the M. officinalis data. The associated metabolic pathways were analyzed based on significant alterations in bioclimatic factors. Results Temperature and precipitation influence the accumulation of bioactive compounds in M. officinalis , as well as the metabolism of monolignol, amino acids, flavonoids, α-linolenic acid, and arachidonic acids. Moreover, temperature was negatively related to the mounts of phenylalanine ammonia-lyase ( PAL ), 4-coumarate-CoA ligase ( 4CL ), and cinnamoyl-CoA reductase ( CCR ) in the monolignol biosynthetic pathway, as well as to the amounts of cinnamyl alcohol and 4-coumaryl alcohol that were made. Conclusions Moderate temperatures and appropriate precipitation enhanced the metabolism of monolignols in M. officinalis , ascribed to elevated levels of effective enzyme that correlated with the temperature and precipitation modulation of PAL , 4CL , and CCR activity. Furthermore, this study discovered that cinnamonyl alcohol and 4-coumaryl alcohol were critical precursors for the production of magnolol and honokiol, indicating potential strategies for improving M. officinalis ' pharmacodynamic characteristics.
Profiles of Essential Oils and Correlations with Phenolic Acids and Primary Metabolites in Flower Buds of Magnolia heptapeta and Magnolia denudata var. purpurascens
Magnolia flower buds are a source of herbal medicines with various active compounds. In this study, differences in the distribution and abundance of major essential oils, phenolic acids, and primary metabolites between white flower buds of Magnolia heptapeta and violet flower buds of Magnolia denudata var. purpurascens were characterised. A multivariate analysis revealed clear separation between the white and violet flower buds with respect to primary and secondary metabolites closely related to metabolic systems. White flower buds contained large amounts of monoterpene hydrocarbons (MH), phenolic acids, aromatic amino acids, and monosaccharides, related to the production of isoprenes, as MH precursors, and the activity of MH synthase. However, concentrations of β-myrcene, a major MH compound, were higher in violet flower buds than in white flower buds, possibly due to higher threonine levels and low acidic conditions induced by comparatively low levels of some organic acids. Moreover, levels of stress-related metabolites, such as oxygenated monoterpenes, proline, and glutamic acid, were higher in violet flower buds than in white flower buds. Our results support the feasibility of metabolic profiling for the identification of phytochemical differences and improve our understanding of the correlated biological pathways for primary and secondary metabolites.
Antifungal Effect of Magnolol and Honokiol from Magnolia officinalis on Alternaria alternata Causing Tobacco Brown Spot
In this study, two phenol compounds, magnolol and honokiol, were extracted from Magnolia officinalis and identified by LC-MS, 1H- and 13C-NMR. The magnolol and honokiol were shown to be effective against seven pathogenic fungi, including Alternaria alternata (Fr.) Keissl, Penicillium expansum (Link) Thom, Alternaria dauci f.sp. solani, Fusarium moniliforme J. Sheld, Fusarium oxysporum Schltdl., Valsa mali Miyabe & G. Yamada, and Rhizoctonia solani J.G. Kühn, with growth inhibition of more than 57%. We also investigated the mechanisms underlying the potential antifungal activity of magnolol and honokiol. The results showed that they inhibited the growth of A. alternata in a dose-dependent manner. Moreover, magnolol and honokiol treatment resulted in distorted mycelia and increased the cell membrane permeability of A. alternata, as determined by conductivity measurements. These results suggest that magnolol and honokiol are potential antifungal agents for application against plant fungal diseases.
The Natural Product Magnolol as a Lead Structure for the Development of Potent Cannabinoid Receptor Agonists: e77739
Magnolol (4-allyl-2-(5-allyl-2-hydroxyphenyl)phenol),the main bioactive constituent of the medicinal plant Magnolia officinalis, and its main metabolite tetrahydromagnolol were recently found to activate cannabinoid (CB) receptors. We now investigated the structure-activity relationships of (tetrahydro)magnolol analogs with variations of the alkyl chains and the phenolic groups and could considerably improve potency. Among the most potent compounds were the dual CB1/CB2 full agonist 2-(2-methoxy-5-propyl-phenyl)-4-hexylphenol(61a, Ki CB1:0.00957 mu M; Ki CB2:0.0238 mu M), and the CB2-selective partial agonist 2-(2-hydroxy-5-propylphenyl)-4-pentylphenol(60, Ki CB1:0.362 mu M; Ki CB2:0.0371 mu M), which showed high selectivity versus GPR18 and GPR55. Compound 61b, an isomer of 61a, was the most potent GPR55 antagonist with an IC50 value of 3.25 mu M but was non-selective. The relatively simple structures, which possess no stereocenters, are easily accessible in a four- to five-step synthetic procedure from common starting materials. The central reaction step is the well-elaborated Suzuki-Miyaura cross-coupling reaction, which is suitable for a combinatorial chemistry approach. The scaffold is versatile and may be fine-tuned to obtain a broad range of receptor affinities, selectivities and efficacies.
De novo transcriptome sequencing and gene expression profiling of Magnolia wufengensis in response to cold stress
Background Magnolia wufengensis is a new species of Magnolia L . and has considerable ornamental and economic value due to its unique characteristics. However, because of its characteristic of poor low temperature resistance, M. wufengensis is hardly popularization and application in the north of China. Furthermore, the mechanisms of gene regulation and signaling pathways involved in the cold-stress response remained unclear in this species. In order to solve the above-mentioned problems, we performed de novo transcriptome assembly and compared the gene expression under the natural (25 °C) and cold (4 °C) conditions for M. wufengensis seedlings. Results More than 46 million high-quality clean reads were produced from six samples (RNA was extracted from the leaves) and were used for performing de novo transcriptome assembly. A total of 59,764 non-redundant unigenes with an average length of 899 bp (N50 = 1,110) were generated. Among these unigenes, 31,038 unigenes exhibited significant sequence similarity to known genes, as determined by BLASTx searches (E-value ≤1.0E-05) against the Nr, SwissProt, String, GO, KEGG, and Cluster of COG databases. Based on a comparative transcriptome analysis, 3,910 unigenes were significantly differentially expressed (false discovery rate [FDR] < 0.05 and |log 2 FC (CT/CK)| ≥ 1) in the cold-treated samples, and 2,616 and 1,294 unigenes were up- and down-regulated by cold stress, respectively. Analysis of the expression patterns of 16 differentially expressed genes (DEGs) by quantitative real-time RT-PCR (qRT-PCR) confirmed the accuracy of the RNA-Seq results. Gene Ontology and KEGG pathway functional enrichment analyses allowed us to better understand these differentially expressed unigenes. The most significant transcriptomic changes observed under cold stress were related to plant hormone and signal transduction pathways, primary and secondary metabolism, and photosynthesis. In addition, 113 transcription factors, including members of the AP2-EREBP, bHLH, WRKY, MYB, NAC, HSF, and bZIP families, were identified as cold responsive. Conclusion We generated a genome-wide transcript profile of M. wufengensis and a de novo-assembled transcriptome that can be used to analyze genes involved in biological processes. In this study, we provide the first report of transcriptome sequencing of cold-stressed M. wufengensis . Our findings provide important clues not only for understanding the molecular mechanisms of cold stress in plants but also for introducing cold hardiness into M. wufengensis.
An efficient micropropagation protocol for an endangered ornamental tree species (Magnolia sirindhorniae Noot. & Chalermglin) and assessment of genetic uniformity through DNA markers
Magnolia sirindhorniae Noot. & Chalermglin is an endangered species with high ornamental and commercial value that needs to be urgently protected and judiciously commercialized. In this study, a protocol for efficient regeneration of this species is standardized. The lateral buds of the M. sirindhorniae plant were used as an explant. Half-strength Murashige and Skoog (MS) medium supplemented with 2.0 mg/L 6-benzyladenine (BA), 0.1 mg/L α-naphthaleneacetic acid (NAA), and 2.0 mg/L gibberellic acid (GA 3 ) was found to be the optimal medium for shoot induction. The maximum shoot multiplication rate (310%) was obtained on Douglas-fir cotyledon revised medium (DCR) fortified with 0.2 mg/L BA, 0.01 mg/L NAA, and additives. The half-strength DCR medium supplemented with 0.5 mg/L NAA and 0.5 mg/L indole-3-butyric acid (IBA) supported the maximum rate (85.0%) of in vitro root induction. After a simple acclimatization process, the survival rate of plantlets in a substrate mixture of sterile perlite and peat soil (1:3; v/v ) was 90.2%. DNA markers were used for assessment of genetic uniformity, confirming the genetic uniformity and stability of regenerated plants of M. sirindhorniae . Thus, the described protocol can safely be applied for large scale propagation of this imperative plant.