Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
118,413 result(s) for "Maintenance management"
Sort by:
Integration of Maintenance Management System Functions with Industry 4.0 Technologies and Features—A Review
Industry 4.0 is the latest technological age, in which recent technological developments are being integrated within industrial systems. Consequently, maintenance management of current industrial manufacturing systems is affected by the emergence of the technologies and features of Industry 4.0. This study aimed to conduct a comprehensive literature review to understand how Industry 4.0 technologies and features affect the various functions of maintenance management systems. The reviewing process was initiated by examining the most recent related literature in three different databases. In total, 54 articles were classified into three research categories. Then, the integration of the main functions and components of the adopted maintenance management model and the Industry 4.0 features and technologies were aligned, focusing on the driving force of predictive maintenance. The analysis focused mainly on the technical aspects of the integration process, including integration concepts and integration-assisting tools, identifying the main applications and highlighting the challenges identified in the analysed literature. The key findings were that the main functions of maintenance management systems are significantly influenced by different Industry 4.0 technologies, mainly artificial intelligence–machine learning, CPS, IoT, big data, augmented reality, and cloud computing, in terms of successful integration. Consequently, the overall system implied tangible improvements through the involvement of different Industry 4.0 features which promote real-time condition monitoring, enable data management and curation, increase coordination between various maintenance tasks, facilitate supervision through remote maintenance applications, and, overall, improve operations and productivity, reduce unplanned shutdowns and, as a result, reduce the associated costs. To provide research directions, examples, and methodologies for integrating the various maintenance management system functions with the cutting-edge Industry 4.0 technologies and features based on real and practical cases present in the reviewed literature, the review’s findings are comprehensively categorised and summarised.
Augmented reality-based facility maintenance management system
Purpose The purpose of this paper is to address the problems of the current facilities maintenance management (FMM) system in finding necessary information, identifying defective facilities and prioritizing maintenance work orders. Design/methodology/approach In this paper, in conjunction with building information modeling, a system is proposed to perform a preliminary inspection of each maintenance request, provide FMM staff with the location of the faulty facility and its associated details and provide recommendations for prioritizing repair work orders. Unity and Revit are used to implement the proposed system and a case study is conducted to demonstrate its effectiveness. Findings An augmented reality (AR)-FMM system was developed using the AR technique in this paper. This system provides the related information even if the FMM receives a problem report without facility information from the occupant and performs a preliminary inspection so that the faulty facility and the route to it are identified. In addition, a work order sequence of pending requests was provided. The visualization of the facility using AR technology has brought great convenience and ease to FMM staff. Originality/value This paper addresses the problems encountered in the current facility maintenance management system concerning AR technology.
The Evaluation of Maturity Level on Heavy Equipment Maintenance Management According to ISO 55001:2014
One of the challenges experienced by companies nowadays is keeping their value of assets which will affect the value of the companies. The companies need to provide certainty to the stakeholders from both internal and external perspectives. These things are important for companies that have a high and large value asset. PT. X is one of the shipping lines in Indonesia and with the large task of shipping companies, it has a large number and high value of assets. Heavy equipment is of the assets that have supported the company’s main business process in the loading-unloading process. By now, there has never been an asset management maturity level on PT. X. Therefore, an evaluation of measurement of the heavy equipment maintenance management system is conducted based on the guidelines of ISO 55001: 2014. The results of the assessment showed that the maturity level of heavy equipment management is 2.7 and there are 13 sub-optimal sub-clauses that need improvement by the company.
Evaluation of eMaintenance Application Based on the New Version of the EFQM Model
Maintenance management is connected with two opposing aspects, management costs and operational efficiency. With the implementation of new technology within the Industry 4.0 (I4.0) concept, new technical solutions are being created. These solutions (mainly robotic workplaces) must reach a maximum performance rate, production quality, and, of course, high availability. Their operation, during the whole life cycle, is expected to be absolutely safe with minimum maintenance costs. These trends, even though they seem to be optimistic, face a lot of problems. The conducted research follows up on the results of previous research aimed at the initial assessment Slovak industrial company readiness status for the I4.0 conception between 2017 and 2019. The aim of the ongoing research was to assess the readiness status in more than 70 industrial organizations in the selected area for the new concept of maintenance management (eMaintenance) and its relation to machinery integrated safety. The research was carried out by questioning, with the structure of individual questions and closed answers stemmed from the self-evaluation according to the new European Foundation for Quality Management (EFQM) Excellence Model (2020). The results of the research were presented to managements of questioned organizations and confirmed the assumptions about a low level of maintenance management transformation to eMaintenance.
Influence of an integrated maintenance management on the vehicle fleet energy efficiency
Integrated fleet maintenance management represents implementation of measures, actions and decision making with the aim of decreasing total maintenance costs and increasing energy efficiency fulfilling requirements of three interdependent components: transport, maintenance and their environment. Therefore, a methodology for integrated fleet maintenance management is developed and presented in this paper. The purpose of the methodology is to contribute in increasing fleet?s energy efficiency and evaluate managers? fleet maintenance management efficiency. The methodology was implemented in the company with own light and medium goods vehicle fleet. According to realized values of defined indicators, the maintenance management has become more efficient in the observed period. It contributed to specific fuel consumption reduction per transport volume, thereby increasing fleet?s energy efficiency. Further, the fleet size was reduced, which affected the rational realization of the given transport volume in the observed period.