Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
14,277
result(s) for
"Major Histocompatibility Complex"
Sort by:
Strength of immune selection in tumors varies with sex and age
2020
Individual MHC genotype constrains the mutational landscape during tumorigenesis. Immune checkpoint inhibition reactivates immunity against tumors that escaped immune surveillance in approximately 30% of cases. Recent studies demonstrated poorer response rates in female and younger patients. Although immune responses differ with sex and age, the role of MHC-based immune selection in this context is unknown. We find that tumors in younger and female individuals accumulate more poorly presented driver mutations than those in older and male patients, despite no differences in MHC genotype. Younger patients show the strongest effects of MHC-based driver mutation selection, with younger females showing compounded effects and nearly twice as much MHC-II based selection. This study presents evidence that strength of immune selection during tumor development varies with sex and age, and may influence the availability of mutant peptides capable of driving effective response to immune checkpoint inhibitor therapy.
Here the authors show that stronger immune selection and immune editing in females and younger patients lead to the accumulation of poorly presented driver mutations in tumors. These results may explain why young and female patients are characterized by lower response rates to immune checkpoint blockade therapies.
Journal Article
Why must T cells be cross-reactive?
2012
T cells must recognize a vast array of potential foreign peptide–MHC complexes. Comprehensive immune cover can only be provided if each T cell recognizes numerous peptides. The implications of this T cell cross-reactivity include autoimmune disease but also provide opportunities for multiple therapeutic interventions.
Clonal selection theory proposed that individual T cells are specific for a single peptide–MHC antigen. However, the repertoire of αβ T cell receptors (TCRs) is dwarfed by the vast array of potential foreign peptide–MHC complexes, and a comprehensive system requires each T cell to recognize numerous peptides and thus be cross-reactive. This compromise on specificity has profound implications because the chance of any natural peptide–MHC ligand being an optimal fit for its cognate TCR is small, as there will almost always be more-potent agonists. Furthermore, any TCR raised against a specific peptide–MHC complex
in vivo
can only be the best available solution from the naive T cell pool and is unlikely to be the best possible solution from the substantially greater number of TCRs that could theoretically be produced. This 'systems view' of TCR recognition provides a plausible cause for autoimmune disease and substantial scope for multiple therapeutic interventions.
Journal Article
How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings
2010
Major histocompatibility complex (MHC) genes have been put forward as a model for studying how genetic diversity is maintained in wild populations. Pathogen-mediated selection (PMS) is believed to generate the extraordinary levels of MHC diversity observed. However, establishing the relative importance of the three proposed mechanisms of PMS (heterozygote advantage, rare-allele advantage and fluctuating selection) has proved extremely difficult. Studies have attempted to differentiate between mechanisms of PMS using two approaches: (i) comparing MHC diversity with that expected under neutrality and (ii) relating MHC diversity to pathogen regime. Here, we show that in many cases the same predictions arise from the different mechanisms under these approaches, and that most studies that have inferred one mechanism of selection have not fully considered the alternative explanations. We argue that, while it may be possible to demonstrate that particular mechanisms of PMS are occurring, resolving their relative importance within a system is probably impossible. A more realistic target is to continue to demonstrate when and where the different mechanisms of PMS occur, with the aim of determining their relative importance across systems. We put forward what we believe to be the most promising approaches that will allow us to progress towards achieving this.
Journal Article
T cell receptor reversed polarity recognition of a self-antigen major histocompatibility complex
2015
To date, structural analysis has demonstrated a highly consistent binding pattern of the TCR to the MHC molecule. Rossjohn and colleagues reveal the first structures of two human T
reg
cell TCRs and show that they bind with a reversed polarity to the MHC.
Central to adaptive immunity is the interaction between the αβ T cell receptor (TCR) and peptide presented by the major histocompatibility complex (MHC) molecule. Presumably reflecting TCR-MHC bias and T cell signaling constraints, the TCR universally adopts a canonical polarity atop the MHC. We report the structures of two TCRs, derived from human induced T regulatory (iT
reg
) cells, complexed to an MHC class II molecule presenting a proinsulin-derived peptide. The ternary complexes revealed a 180° polarity reversal compared to all other TCR-peptide-MHC complex structures. Namely, the iT
reg
TCR α-chain and β-chain are overlaid with the α-chain and β-chain of MHC class II, respectively. Nevertheless, this TCR interaction elicited a peptide-reactive, MHC-restricted T cell signal. Thus TCRs are not 'hardwired' to interact with MHC molecules in a stereotypic manner to elicit a T cell signal, a finding that fundamentally challenges our understanding of TCR recognition.
Journal Article
Genetics of antigen processing and presentation
2019
Immune response to disease requires coordinated expression of an army of molecules. The highly polymorphic MHC class I and class II molecules are key to control of specificity of antigen presentation. Processing of the antigen, to peptides or other moieties, requires other sets of molecules. For classical class I, this includes TAP peptide transporters, proteasome components and Tapasin, genes which are encoded within the MHC. Similarly, HLA-DO and -DM, which influence presentation by HLA class II molecules, are encoded in the MHC region. Analysis of MHC mutants, including point mutations and large deletions, has been central to understanding the roles of these genes. Mouse genetics has also played a major role. Many other genes have been identified including those controlling expression of HLA class I and class II at the transcriptional level. Another genetic approach that has provided insight has been the analysis of microorganisms, including viruses and bacteria that escape immune recognition by blocking these antigen processing and presentation pathways. Here, we provide a brief history of the genetic approaches, both traditional and modern, that have been used in the quest to understand antigen processing and presentation.
Journal Article
Immunogenetic novelty confers a selective advantage in host–pathogen coevolution
2018
The major histocompatibility complex (MHC) is crucial to the adaptive immune response of vertebrates and is among the most polymorphic gene families known. Its high diversity is usually attributed to selection imposed by fast-evolving pathogens. Pathogens are thought to evolve to escape recognition by common immune alleles, and, hence, novel MHC alleles, introduced through mutation, recombination, or gene flow, are predicted to give hosts superior resistance. Although this theoretical prediction underpins host–pathogen “Red Queen” coevolution, it has not been demonstrated in the context of natural MHC diversity. Here, we experimentally tested whether novel MHC variants (both alleles and functional “supertypes”) increased resistance of guppies (Poecilia reticulata) to a common ectoparasite (Gyrodactylus turnbulli). We used exposure-controlled infection trials with wild-sourced parasites, and Gyrodactylus-naïve host fish that were F₂ descendants of crossed wild populations. Hosts carrying MHC variants (alleles or supertypes) that were new to a given parasite population experienced a 35–37% reduction in infection intensity, but the number of MHC variants carried by an individual, analogous to heterozygosity in single-locus systems, was not a significant predictor. Our results provide direct evidence of novel MHC variant advantage, confirming a fundamental mechanism underpinning the exceptional polymorphism of this gene family and highlighting the role of immunogenetic novelty in host–pathogen coevolution.
Journal Article
NetMHCcons: a consensus method for the major histocompatibility complex class I predictions
2012
A key role in cell-mediated immunity is dedicated to the major histocompatibility complex (MHC) molecules that bind peptides for presentation on the cell surface. Several
in silico
methods capable of predicting peptide binding to MHC class I have been developed. The accuracy of these methods depends on the data available characterizing the binding specificity of the MHC molecules. It has, moreover, been demonstrated that consensus methods defined as combinations of two or more different methods led to improved prediction accuracy. This plethora of methods makes it very difficult for the non-expert user to choose the most suitable method for predicting binding to a given MHC molecule. In this study, we have therefore made an in-depth analysis of combinations of three state-of-the-art MHC–peptide binding prediction methods (
NetMHC
,
NetMHCpan
and PickPocket). We demonstrate that a simple combination of
NetMHC
and
NetMHCpan
gives the highest performance when the allele in question is included in the training and is characterized by at least 50 data points with at least ten binders. Otherwise,
NetMHCpan
is the best predictor. When an allele has not been characterized, the performance depends on the distance to the training data.
NetMHCpan
has the highest performance when close neighbours are present in the training set, while the combination of
NetMHCpan
and
PickPocket
outperforms either of the two methods for alleles with more remote neighbours. The final method, NetMHCcons, is publicly available at
www.cbs.dtu.dk/services/NetMHCcons
, and allows the user in an automatic manner to obtain the most accurate predictions for any given MHC molecule.
Journal Article
Nomenclature report 2019: major histocompatibility complex genes and alleles of Great and Small Ape and Old and New World monkey species
2020
The major histocompatibility complex (MHC) is central to the innate and adaptive immune responses of jawed vertebrates. Characteristic of the MHC are high gene density, gene copy number variation, and allelic polymorphism. Because apes and monkeys are the closest living relatives of humans, the MHCs of these non-human primates (NHP) are studied in depth in the context of evolution, biomedicine, and conservation biology. The Immuno Polymorphism Database (IPD)-MHC NHP Database (IPD-MHC NHP), which curates MHC data of great and small apes, as well as Old and New World monkeys, has been upgraded. The curators of the database are responsible for providing official designations for newly discovered alleles. This nomenclature report updates the 2012 report, and summarizes important nomenclature issues and relevant novel features of the IPD-MHC NHP Database.
Journal Article
MHC Variants Associated With Symptomatic Versus Asymptomatic SARS-CoV-2 Infection in Highly Exposed Individuals
2021
Despite the high number of individuals infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) who develop coronavirus disease 2019 (COVID-19) symptoms worldwide, many exposed individuals remain asymptomatic and/or uninfected and seronegative. This could be explained by a combination of environmental (exposure), immunological (previous infection), epigenetic, and genetic factors. Aiming to identify genetic factors involved in immune response in symptomatic COVID-19 as compared to asymptomatic exposed individuals, we analyzed 83 Brazilian couples where one individual was infected and symptomatic while the partner remained asymptomatic and serum-negative for at least 6 months despite sharing the same bedroom during the infection. We refer to these as “discordant couples”. We performed whole-exome sequencing followed by a state-of-the-art method to call genotypes and haplotypes across the highly polymorphic major histocompatibility complex (MHC) region. The discordant partners had comparable ages and genetic ancestry, but women were overrepresented (65%) in the asymptomatic group. In the antigen-presentation pathway, we observed an association between HLA-DRB1 alleles encoding Lys at residue 71 (mostly DRB1*03:01 and DRB1*04:01) and DOB*01:02 with symptomatic infections and HLA-A alleles encoding 144Q/151R with asymptomatic seronegative women. Among the genes related to immune modulation, we detected variants in MICA and MICB associated with symptomatic infections. These variants are related to higher expression of soluble MICA and low expression of MICB. Thus, quantitative differences in these molecules that modulate natural killer (NK) activity could contribute to susceptibility to COVID-19 by downregulating NK cell cytotoxic activity in infected individuals but not in the asymptomatic partners.
Journal Article
MHC matching fails to prevent long-term rejection of iPSC-derived neurons in non-human primates
2019
Cell therapy products (CTP) derived from pluripotent stem cells (iPSCs) may constitute a renewable, specifically differentiated source of cells to potentially cure patients with neurodegenerative disorders. However, the immunogenicity of CTP remains a major issue for therapeutic approaches based on transplantation of non-autologous stem cell-derived neural grafts. Despite its considerable side-effects, long-term immunosuppression, appears indispensable to mitigate neuro-inflammation and prevent rejection of allogeneic CTP. Matching iPSC donors’ and patients’ HLA haplotypes has been proposed as a way to access CTP with enhanced immunological compatibility, ultimately reducing the need for immunosuppression. In the present work, we challenge this paradigm by grafting autologous, MHC-matched and mis-matched neuronal grafts in a primate model of Huntington’s disease. Unlike previous reports in unlesioned hosts, we show that in the absence of immunosuppression MHC matching alone is insufficient to grant long-term survival of neuronal grafts in the lesioned brain.
Matching iPSC donors’ and patients’ HLA haplotypes has been proposed as a way to generate cell therapy products with enhanced immunological compatibility. Here the authors show that MHC matching alone is insufficient to grant long-term survival of neuronal grafts in the lesioned brain of non-human primates.
Journal Article