Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
970 result(s) for "Male Gametocytes"
Sort by:
The Plasmodium falciparum male gametocyte protein P230p, a paralog of P230, is vital for ookinete formation and mosquito transmission
Two members of 6-cysteine (6-cys) protein family, P48/45 and P230, are important for gamete fertility in rodent and human malaria parasites and are leading transmission blocking vaccine antigens. Rodent and human parasites encode a paralog of P230, called P230p. While P230 is expressed in male and female parasites, P230p is expressed only in male gametocytes and gametes. In rodent malaria parasites this protein is dispensable throughout the complete life-cycle; however, its function in P . falciparum is unknown. Using CRISPR/Cas9 methodology we disrupted the gene encoding Pfp230p resulting in P . falciparum mutants ( Pf Δ p230p ) lacking P230p expression. The Pf Δ p230p mutants produced normal numbers of male and female gametocytes, which retained expression of P48/45 and P230. Upon activation male PfΔp230p gametocytes undergo exflagellation and form male gametes. However, male gametes are unable to attach to red blood cells resulting in the absence of characteristic exflagellation centres in vitro . In the absence of P230p, zygote formation as well as oocyst and sporozoite development were strongly reduced (>98%) in mosquitoes. These observations demonstrate that P230p, like P230 and P48/45, has a vital role in P . falciparum male fertility and zygote formation and warrants further investigation as a potential transmission blocking vaccine candidate.
qRT-PCR versus IFA-based Quantification of Male and Female Gametocytes in Low-Density Plasmodium falciparum Infections and Their Relevance for Transmission
Abstract Background Accurate quantification of female and male gametocytes and sex ratios in asymptomatic low-density malaria infections are important for assessing their transmission potential. Gametocytes often escape detection even by molecular methods, therefore ultralow gametocyte densities were quantified in large blood volumes. Methods Female and male gametocytes were quantified in 161 PCR-positive Plasmodium falciparum infections from a cross-sectional survey in Papua New Guinea. Ten-fold concentrated RNA from 800 µL blood was analyzed using female-specific pfs25 and male-specific pfmget or mssp qRT-PCR. Gametocyte sex ratios from qRT-PCR were compared with those from immunofluorescence assays (IFA). Results Gametocytes were identified in 58% (93/161) P. falciparum-positive individuals. Mean gametocyte densities were frequently below 1 female and 1 male gametocyte/µL by qRT-PCR. The mean proportion of males was 0.39 (95% confidence interval, 0.33–0.44) by pfs25/pfmget qRT-PCR; this correlated well with IFA results (Pearsons r2 = 0.91; P < .001). A Poisson model fitted to our data predicted 16% P. falciparum-positive individuals that are likely to transmit, assuming at least 1 female and 1 male gametocyte per 2.5 µL mosquito bloodmeal. Conclusions Based on model estimates of female and male gametocytes per 2.5 µL blood, P. falciparum-positive individuals detected exclusively by ultrasensitive diagnostics are negligible for human-to-mosquito transmission. Estimating the transmission potential of ultralow-density malaria infections informs interventions. Almost all infections with ≥1 female and male gametocyte per 2.5 µL mosquito bloodmeal, and thus with highest likelihood of contributing to human-to-mosquito transmission, were detectable by standard molecular diagnostics.
Plasmodium falciparum Calcium-Dependent Protein Kinase 2 Is Critical for Male Gametocyte Exflagellation but Not Essential for Asexual Proliferation
Drug development efforts have focused mostly on the asexual blood stages of the malaria parasite Plasmodium falciparum . Except for primaquine, which has its own limitations, there are no available drugs that target the transmission of the parasite to mosquitoes. Therefore, there is a need to validate new parasite proteins that can be targeted for blocking transmission. P. falciparum calcium-dependent protein kinases ( Pf CDPKs) play critical roles at various stages of the parasite life cycle and, importantly, are absent in the human host. These features mark them as attractive drug targets. In this study, using CRISPR/Cas9 we successfully knocked out Pf CDPK2 from blood-stage parasites, which was previously thought to be an indispensable protein. The growth rate of the Pf CDPK2 knockout (KO) parasites was similar to that of wild-type parasites, confirming that Pf CDPK2 function is not essential for the asexual proliferation of the parasite in vitro . The mature male and female gametocytes of Pf CDPK2 KO parasites become round after induction. However, they fail to infect female Anopheles stephensi mosquitoes due to a defect(s) in male gametocyte exflagellation and possibly in female gametes. IMPORTANCE Despite reductions in the number of deaths it causes, malaria continues to be a leading infectious disease of the developing world. For effective control and elimination of malaria, multiple stages of the parasite need to be targeted. One such stage includes the transmission of the parasite to mosquitoes. Here, we demonstrate the successful knockout of Pf CDPK2, which was previously thought to be indispensable for parasite growth in red blood cells. The Pf CDPK2 KO parasites are incapable of establishing an infection in mosquitoes. Therefore, our study suggests that targeting Pf CDPK2 may be a good strategy to control malaria transmission in countries with high transmission. Moreover, molecular understanding of the signaling pathway of Pf CDPK2 may provide additional targets for malaria control. Despite reductions in the number of deaths it causes, malaria continues to be a leading infectious disease of the developing world. For effective control and elimination of malaria, multiple stages of the parasite need to be targeted. One such stage includes the transmission of the parasite to mosquitoes. Here, we demonstrate the successful knockout of Pf CDPK2, which was previously thought to be indispensable for parasite growth in red blood cells. The Pf CDPK2 KO parasites are incapable of establishing an infection in mosquitoes. Therefore, our study suggests that targeting Pf CDPK2 may be a good strategy to control malaria transmission in countries with high transmission. Moreover, molecular understanding of the signaling pathway of Pf CDPK2 may provide additional targets for malaria control.
italic toggle=\yes\>Plasmodium falciparum /italic> Calcium-Dependent Protein Kinase 2 Is Critical for Male Gametocyte Exflagellation but Not Essential for Asexual Proliferation
ABSTRACT Drug development efforts have focused mostly on the asexual blood stages of the malaria parasite Plasmodium falciparum. Except for primaquine, which has its own limitations, there are no available drugs that target the transmission of the parasite to mosquitoes. Therefore, there is a need to validate new parasite proteins that can be targeted for blocking transmission. P. falciparum calcium-dependent protein kinases (PfCDPKs) play critical roles at various stages of the parasite life cycle and, importantly, are absent in the human host. These features mark them as attractive drug targets. In this study, using CRISPR/Cas9 we successfully knocked out PfCDPK2 from blood-stage parasites, which was previously thought to be an indispensable protein. The growth rate of the PfCDPK2 knockout (KO) parasites was similar to that of wild-type parasites, confirming that PfCDPK2 function is not essential for the asexual proliferation of the parasite in vitro. The mature male and female gametocytes of PfCDPK2 KO parasites become round after induction. However, they fail to infect female Anopheles stephensi mosquitoes due to a defect(s) in male gametocyte exflagellation and possibly in female gametes. IMPORTANCE Despite reductions in the number of deaths it causes, malaria continues to be a leading infectious disease of the developing world. For effective control and elimination of malaria, multiple stages of the parasite need to be targeted. One such stage includes the transmission of the parasite to mosquitoes. Here, we demonstrate the successful knockout of PfCDPK2, which was previously thought to be indispensable for parasite growth in red blood cells. The PfCDPK2 KO parasites are incapable of establishing an infection in mosquitoes. Therefore, our study suggests that targeting PfCDPK2 may be a good strategy to control malaria transmission in countries with high transmission. Moreover, molecular understanding of the signaling pathway of PfCDPK2 may provide additional targets for malaria control.
Sperm proteins SOF1, TMEM95, and SPACA6 are required for sperm–oocyte fusion in mice
Sperm–oocyte membrane fusion is one of the most important events for fertilization. So far, IZUMO1 and Fertilization Influencing Membrane Protein (FIMP) on the sperm membrane and CD9 and JUNO (IZUMO1R/FOLR4) on the oocyte membrane have been identified as fusion-required proteins. However, the molecular mechanisms for sperm–oocyte fusion are still unclear. Here, we show that testis-enriched genes, sperm–oocyte fusion required 1 (Sof1/Llcfc1/1700034O15Rik), transmembrane protein 95 (Tmem95), and sperm acrosome associated 6 (Spaca6), encode sperm proteins required for sperm–oocyte fusion in mice. These knockout (KO) spermatozoa carry IZUMO1 but cannot fuse with the oocyte plasma membrane, leading to male sterility. Transgenic mice which expressed mouse Sof1, Tmem95, and Spaca6 rescued the sterility of Sof1, Tmem95, and Spaca6 KO males, respectively. SOF1 and SPACA6 remain in acrosome-reacted spermatozoa, and SPACA6 translocates to the equatorial segment of these spermatozoa. The coexpression of SOF1, TMEM95, and SPACA6 in IZUMO1-expressing cultured cells did not enhance their ability to adhere to the oocyte membrane or allow them to fuse with oocytes. SOF1, TMEM95, and SPACA6 may function cooperatively with IZUMO1 and/or unknown fusogens in sperm–oocyte fusion.
Aneuploidy in mammalian oocytes and the impact of maternal ageing
During fertilization, the egg and the sperm are supposed to contribute precisely one copy of each chromosome to the embryo. However, human eggs frequently contain an incorrect number of chromosomes — a condition termed aneuploidy, which is much more prevalent in eggs than in either sperm or in most somatic cells. In turn, aneuploidy in eggs is a leading cause of infertility, miscarriage and congenital syndromes. Aneuploidy arises as a consequence of aberrant meiosis during egg development from its progenitor cell, the oocyte. In human oocytes, chromosomes often segregate incorrectly. Chromosome segregation errors increase in women from their mid-thirties, leading to even higher levels of aneuploidy in eggs from women of advanced maternal age, ultimately causing age-related infertility. Here, we cover the two main areas that contribute to aneuploidy: (1) factors that influence the fidelity of chromosome segregation in eggs of women from all ages and (2) factors that change in response to reproductive ageing. Recent discoveries reveal new error-causing pathways and present a framework for therapeutic strategies to extend the span of female fertility.Fidelity of meiosis in human oocytes can be compromised, leading to egg aneuploidy and impaired embryo development, which increase with advanced maternal age. Recent studies have shed light on the molecular mechanisms underlying aberrant chromosome segregation during oocyte meiosis and the impact of ageing on this process.
A selective inhibitor of the sperm-specific potassium channel SLO3 impairs human sperm function
To fertilize an oocyte, the membrane potential of both mouse and human sperm must hyperpolarize (become more negative inside). Determining the molecular mechanisms underlying this hyperpolarization is vital for developing new contraceptive methods and detecting causes of idiopathic male infertility. In mouse sperm, hyperpolarization is caused by activation of the sperm-specific potassium (K⁺) channel SLO3 [C. M. Santi et al., FEBS Lett. 584, 1041–1046 (2010)]. In human sperm, it has long been unclear whether hyperpolarization depends on SLO3 or the ubiquitous K⁺ channel SLO1 [N. Mannowetz, N. M. Naidoo, S. A. S. Choo, J. F. Smith, P. V. Lishko, Elife 2, e01009 (2013), C. Brenker et al., Elife 3, e01438 (2014), and S. A. Mansell, S. J. Publicover, C. L. R. Barratt, S. M. Wilson, Mol. Hum. Reprod. 20, 392–408 (2014)]. In this work, we identified the first selective inhibitor for human SLO3—VU0546110—and showed that it completely blocked heterologous SLO3 currents and endogenous K⁺ currents in human sperm. This compound also prevented sperm from hyperpolarizing and undergoing hyperactivated motility and induced acrosome reaction, which are necessary to fertilize an egg. We conclude that SLO3 is the sole K⁺ channel responsible for hyperpolarization and significantly contributes to the fertilizing ability of human sperm. Moreover, SLO3 is a good candidate for contraceptive development, and mutation of this gene is a possible cause of idiopathic male infertility.
Oviductal motile cilia are essential for oocyte pickup but dispensable for sperm and embryo transport
Mammalian oviducts play an essential role in female fertility by picking up ovulated oocytes and transporting and nurturing gametes (sperm/oocytes) and early embryos. However, the relative contributions to these functions from various cell types within the oviduct remain controversial. The oviduct in mice deficient in two microRNA (miRNA) clusters (miR-34b/c and miR-449) lacks cilia, thus allowing us to define the physiological role of oviductal motile cilia. Here, we report that the infundibulum without functional motile cilia failed to pick up the ovulated oocytes. In the absence of functional motile cilia, sperm could still reach the ampulla region, and early embryos managed to migrate to the uterus, but the efficiency was reduced. Further transcriptomic analyses revealed that the five messenger ribonucleic acids (mRNAs) encoded by miR-34b/c and miR-449 function to stabilize a large number of mRNAs involved in cilium organization and assembly and that Tubb4b was one of their target genes. Our data demonstrate that motile cilia in the infundibulum are essential for oocyte pickup and thus, female fertility, whereas motile cilia in other parts of the oviduct facilitate gamete and embryo transport but are not absolutely required for female fertility.
Generation of functional oocytes from male mice in vitro
Sex chromosome disorders severely compromise gametogenesis in both males and females. In oogenesis, the presence of an additional Y chromosome or the loss of an X chromosome disturbs the robust production of oocytes 1 – 5 . Here we efficiently converted the XY chromosome set to XX without an additional Y chromosome in mouse pluripotent stem (PS) cells. In addition, this chromosomal alteration successfully eradicated trisomy 16, a model of Down’s syndrome, in PS cells. Artificially produced euploid XX PS cells differentiated into mature oocytes in culture with similar efficiency to native XX PS cells. Using this method, we differentiated induced pluripotent stem cells from the tail of a sexually mature male mouse into fully potent oocytes, which gave rise to offspring after fertilization. This study provides insights that could ameliorate infertility caused by sex chromosome or autosomal disorders, and opens the possibility of bipaternal reproduction. Mouse induced pluripotent stem cells derived from differentiated fibroblasts could be converted from male (XY) to female (XX), resulting in cells that could form oocytes and give rise to offspring after fertilization.
Malaria parasites utilize two essential plasma membrane fusogens for gamete fertilization
Cell fusion of female and male gametes is the climax of sexual reproduction. In many organisms, the Hapless 2 (HAP2) family of proteins play a critical role in gamete fusion. We find that Plasmodium falciparum , the causative agent of human malaria, expresses two HAP2 proteins: Pf HAP2 and Pf HAP2p. These proteins are present in stage V gametocytes and localize throughout the flagellum of male gametes. Gene deletion analysis and genetic crosses show that Pf HAP2 and Pf HAP2p individually are essential for male fertility and thereby, parasite transmission to the mosquito. Using a cell fusion assay, we demonstrate that Pf HAP2 and Pf HAP2p are both authentic plasma membrane fusogens. Our results establish nonredundant essential roles for Pf HAP2 and Pf HAP2p in mediating gamete fusion in Plasmodium and suggest avenues in the design of novel strategies to prevent malaria parasite transmission from humans to mosquitoes.