Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
401 result(s) for "Mammalian female genital system"
Sort by:
Progesterone activates the principal Ca2+ channel of human sperm
Progesterone's role in sperm The female steroid hormone progesterone is produced by the ovaries and the placenta, and supports gestation and embryogenesis through its actions on a well-characterized nuclear progesterone receptor. But progesterone released by cells surrounding the egg also stimulates sperm cells within the Fallopian tubes and increases their fertilizing ability, and the mechanism of this action of progesterone has remained elusive. Two independent research groups now report that progesterone potently activates CatSper, the principal Ca 2+ channel of the sperm flagellum. Their data demonstrate that the CatSper channel or a directly associated membrane protein serves as a novel progesterone receptor that can mediate a fast, non-genomic effect of progesterone at the level of the sperm plasma membrane. These results should help to define the physiological role of progesterone and CatSper in sperm, and could lead to the development of new classes of non-hormonal contraceptives. Progesterone stimulates an increase in Ca 2+ levels in human sperm, but the underlying signalling mechanism is poorly understood. Two studies now show that progesterone activates the sperm-specific, pH-sensitive CatSper calcium channel, leading to a rapid influx of Ca 2+ ions into the spermatozoa. These results should help to define the physiological role of progesterone and CatSper in sperm, and could lead to the development of new classes of non-hormonal contraceptives. Steroid hormone progesterone released by cumulus cells surrounding the egg is a potent stimulator of human spermatozoa. It attracts spermatozoa towards the egg and helps them penetrate the egg’s protective vestments 1 . Progesterone induces Ca 2+ influx into spermatozoa 1 , 2 , 3 and triggers multiple Ca 2+ -dependent physiological responses essential for successful fertilization, such as sperm hyperactivation, acrosome reaction and chemotaxis towards the egg 4 , 5 , 6 , 7 , 8 . As an ovarian hormone, progesterone acts by regulating gene expression through a well-characterized progesterone nuclear receptor 9 . However, the effect of progesterone upon transcriptionally silent spermatozoa remains unexplained and is believed to be mediated by a specialized, non-genomic membrane progesterone receptor 5 , 10 . The identity of this non-genomic progesterone receptor and the mechanism by which it causes Ca 2+ entry remain fundamental unresolved questions in human reproduction. Here we elucidate the mechanism of the non-genomic action of progesterone on human spermatozoa by identifying the Ca 2+ channel activated by progesterone. By applying the patch-clamp technique to mature human spermatozoa, we found that nanomolar concentrations of progesterone dramatically potentiate CatSper, a pH-dependent Ca 2+ channel of the sperm flagellum. We demonstrate that human CatSper is synergistically activated by elevation of intracellular pH and extracellular progesterone. Interestingly, human CatSper can be further potentiated by prostaglandins, but apparently through a binding site other than that of progesterone. Because our experimental conditions did not support second messenger signalling, CatSper or a directly associated protein serves as the elusive non-genomic progesterone receptor of sperm. Given that the CatSper-associated progesterone receptor is sperm specific and structurally different from the genomic progesterone receptor, it represents a promising target for the development of a new class of non-hormonal contraceptives.
Granulosa Cell Ligand NPPC and Its Receptor NPR2 Maintain Meiotic Arrest in Mouse Oocytes
Granulosa cells of mammalian Graafian follicles maintain oocytes in meiotic arrest, which prevents their precocious maturation. We show that mouse mural granulosa cells, which line the follicle wall, express natriuretic peptide precursor type C (Nppc) messenger RNA (mRNA), whereas cumulus cells surrounding oocytes express mRNA of the NPPC receptor NPR2, a guanylyl cyclase. NPPC increased cGMP levels in cumulus cells and oocytes and inhibited meiotic resumption in vitro. Meiotic arrest was not sustained in most Graafian follicles of Nppc or Npr2 mutant mice, and meiosis resumed precociously. Oocyte-derived paracrine factors promoted cumulus cell expression of Npr2 mRNA. Therefore, the granulosa cell ligand NPPC and its receptor NPR2 in cumulus cells prevent precocious meiotic maturation, which is critical for maturation and ovulation synchrony and for normal female fertility.
The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm
Progesterone's role in sperm The female steroid hormone progesterone is produced by the ovaries and the placenta, and supports gestation and embryogenesis through its actions on a well-characterized nuclear progesterone receptor. But progesterone released by cells surrounding the egg also stimulates sperm cells within the Fallopian tubes and increases their fertilizing ability, and the mechanism of this action of progesterone has remained elusive. Two independent research groups now report that progesterone potently activates CatSper, the principal Ca 2+ channel of the sperm flagellum. Their data demonstrate that the CatSper channel or a directly associated membrane protein serves as a novel progesterone receptor that can mediate a fast, non-genomic effect of progesterone at the level of the sperm plasma membrane. These results should help to define the physiological role of progesterone and CatSper in sperm, and could lead to the development of new classes of non-hormonal contraceptives. Progesterone stimulates an increase in Ca 2+ levels in human sperm, but the underlying signalling mechanism is poorly understood. Two studies now show that progesterone activates the sperm-specific, pH-sensitive CatSper calcium channel, leading to a rapid influx of Ca 2+ ions into the spermatozoa. These results should help to define the physiological role of progesterone and CatSper in sperm, and could lead to the development of new classes of non-hormonal contraceptives. In the oviduct, cumulus cells that surround the oocyte release progesterone. In human sperm, progesterone stimulates a Ca 2+ increase by a non-genomic mechanism 1 , 2 , 3 . The Ca 2+ signal has been proposed to control chemotaxis, hyperactivation and acrosomal exocytosis of sperm 4 , 5 , 6 , 7 , 8 . However, the underlying signalling mechanism has remained mysterious. Here we show that progesterone activates the sperm-specific, pH-sensitive CatSper Ca 2+ channel 9 , 10 , 11 . We found that both progesterone and alkaline pH stimulate a rapid Ca 2+ influx with almost no latency, incompatible with a signalling pathway involving metabotropic receptors and second messengers. The Ca 2+ signals evoked by alkaline pH and progesterone are inhibited by the Ca v channel blockers NNC 55-0396 and mibefradil. Patch-clamp recordings from sperm reveal an alkaline-activated current carried by mono- and divalent ions that exhibits all the hallmarks of sperm-specific CatSper Ca 2+ channels 10 , 11 . Progesterone substantially enhances the CatSper current. The alkaline- and progesterone-activated CatSper current is inhibited by both drugs. Our results resolve a long-standing controversy over the non-genomic progesterone signalling. In human sperm, either the CatSper channel itself or an associated protein serves as the non-genomic progesterone receptor. The identification of CatSper channel blockers will greatly facilitate the study of Ca 2+ signalling in sperm and help to define further the physiological role of progesterone and CatSper.
Antiproliferative Action of Progesterone in Uterine Epithelium Is Mediated by Hand2
During pregnancy, progesterone inhibits the growth-promoting actions of estrogen in the uterus. However, the mechanism for this is not clear. The attenuation of estrogen-mediated proliferation of the uterine epithelium by progesterone is a prerequisite for successful implantation. Our study reveals that progesterone-induced expression of the basic helix-loop-helix transcription factor Hand2 in the uterine stroma suppresses the production of several fibroblast growth factors (FGFs) that act as paracrine mediators of mitogenic effects of estrogen on the epithelium. In mouse uteri lacking Hand2, continued induction of these FGFs in the stroma maintains epithelial proliferation and stimulates estrogen-induced pathways, resulting in impaired implantation. Thus, Hand2 is a critical regulator of the uterine stromal-epithelial communication that directs proper steroid regulation conducive for the establishment of pregnancy.
The Influence of Estrogen on Skeletal Muscle
As women enter menopause, the concentration of estrogen and other female hormones declines. This hormonal decrease has been associated with a number of negative outcomes, including a greater incidence of injury as well as a delay in recovery from these injuries. Over the past two decades, our understanding of the protective effects of estrogen against various types of injury and disease states has grown immensely. In skeletal muscle, studies with animals have demonstrated that sex and estrogen may potentially influence muscle contractile properties and attenuate indices of post-exercise muscle damage, including the release of creatine kinase into the bloodstream and activity of the intramuscular lysosomal acid hydrolase, β-glucuronidase. Furthermore, numerous studies have revealed an estrogen-mediated attenuation of infiltration of inflammatory cells such as neutrophils and macrophages into the skeletal muscles of rats following exercise or injury. Estrogen has also been shown to play a significant role in stimulating muscle repair and regenerative processes, including the activation and proliferation of satellite cells. Although the mechanisms by which estrogen exerts its influence upon indices of skeletal muscle damage, inflammation and repair have not been fully elucidated, it is thought that estrogen may potentially exert its protective effects by: (i) acting as an antioxidant, thus limiting oxidative damage; (ii) acting as a membrane stabilizer by intercalating within membrane phospholipids; and (iii) binding to estrogen receptors, thus governing the regulation of a number of downstream genes and molecular targets. In contrast to animal studies, studies with humans have not as clearly delineated an effect of estrogen on muscle contractile function or on indices of post-exercise muscle damage and inflammation. These inconsistencies have been attributed to a number of factors, including age and fitness level of subjects, the type and intensity of exercise protocols, and a focus on sex differences that typically involve factors and hormones in addition to estrogen. In recent years, hormone replacement therapy (HRT) or estrogen combined with exercise have been proposed as potentially therapeutic agents for postmenopausal women, as these agents may potentially limit muscle damage and inflammation and stimulate repair in this population. While the benefits and potential health risks of long-term HRT use have been widely debated, controlled studies using short-term HRT or other estrogen agonists may provide future new and valuable insights into understanding the effects of estrogen on skeletal muscle, and greatly benefit the aging female population. Recent studies with older females have begun to demonstrate their benefits.
The Effect of the Menstrual Cycle on Exercise Metabolism
The female hormones, oestrogen and progesterone, fluctuate predictably across the menstrual cycle in naturally cycling eumenorrhoeic women. Other than reproductive function, these hormones influence many other physiological systems, and their action during exercise may have implications for exercise performance. Although a number of studies have found exercise performance — and in particular, endurance performance — to vary between menstrual phases, there is an equal number of such studies reporting no differences. However, a comparison of the increase in the oestrogen concentration (E) relative to progesterone concentration (P) as the E/P ratio (pmol/ nmol) in the luteal phase in these studies reveals that endurance performance may only be improved in the mid-luteal phase compared with the early follicular phase when the E/P ratio is high in the mid-luteal phase. Furthermore, the late follicular phase, characterized by the pre-ovulatory surge in oestrogen and suppressed progesterone concentrations, tends to promote improved performance in a cycling time trial and future studies should include this menstrual phase. Menstrual phase variations in endurance performance may largely be a consequence of changes to exercise metabolism stimulated by the fluctuations in ovarian hormone concentrations. The literature suggests that oestrogen may promote endurance performance by altering carbohydrate, fat and protein metabolism, with progesterone often appearing to act antagonistically. Details of the ovarian hormone influences on the metabolism of these macronutrients are no longer only limited to evidence from animal research and indirect calorimetry but have been verified by substrate kinetics determined with stable tracer methodology in eumenorrhoeic women. This review thoroughly examines the metabolic perturbations induced by the ovarian hormones and, by detailed comparison, proposes reasons for many of the inconsistent reports in menstrual phase comparative research. Often the magnitude of increase in the ovarian hormones between menstrual phases and the E/P ratio appear to be important factors determining an effect on metabolism. However, energy demand and nutritional status may be confounding variables, particularly in carbohydrate metabolism. The review specifically considers how changes in metabolic responses due to the ovarian hormones may influence exercise performance. For example, oestrogen promotes glucose availability and uptake into type I muscle fibres providing the fuel of choice during short duration exercise; an action that can be inhibited by progesterone. A high oestrogen concentration in the luteal phase augments muscle glycogen storage capacity compared with the low oestrogen environment of the early follicular phase. However, following a carbo-loading diet will super-compensate muscle glycogen stores in the early follicular phase to values attained in the luteal phase. Oestrogen concentrations of the luteal phase reduce reliance on muscle glycogen during exercise and although not as yet supported by human tracer studies, oestrogen increases free fatty acid availability and oxidative capacity in exercise, favouring endurance performance. Evidence of oestrogen’s stimulation of 50-AMPactivated protein kinase may explain many of the metabolic actions of oestrogen. However, both oestrogen and progesterone suppress gluconeogenic output during exercise and this may compromise performance in the latter stages of ultra-long events if energy replacement supplements are inadequate. Moreover, supplementing energy intake during exercise with protein may be more relevant when progesterone concentration is elevated compared with menstrual phases favouring a higher relative oestrogen concentration, as progesterone promotes protein catabolism while oestrogen suppresses protein catabolism. Furthermore, prospective research ideas for furthering the understanding of the impact of the menstrual cycle on metabolism and exercise performance are highlighted.
Antral Follicle Count Reliably Predicts Number of Morphologically Healthy Oocytes and Follicles in Ovaries of Young Adult Cattle
Methods to predict numbers of healthy oocytes in the ovaries of young adults could have important diagnostic relevance in family planning and animal agriculture. We have observed that peak antral follicle count (AFC) determined by serial ovarian ultrasonography during follicular waves is very highly reproducible within individual young adult cattle, despite 7-fold variation among animals. Herein, we tested the hypothesis that AFC is positively associated with the number of morphologically healthy oocytes and follicles in ovaries and with serum concentrations of anti-Müllerian hormone (AMH), an indirect marker for number of healthy follicles and oocytes in ovaries. In the present study, age-matched young adult cattle (12-18 mo old) were subjected to serial ultrasonography to identify animals with a consistently high (greater-than-or-equal25 follicles that were greater-than-or-equal3 mm in diameter) or low ([less-than or equal to]15 follicles) AFC during follicular waves. Differences in serum AMH concentrations, ovary weight, and number of morphologically healthy and atretic follicles and oocytes were determined. The phenotypic classifications of cattle based on AFC during follicular waves or AMH concentrations both predict reliably the relative number of morphologically healthy follicles and oocytes in ovaries of age-matched young adult cattle.
Germline stem cells and follicular renewal in the postnatal mammalian ovary
A basic doctrine of reproductive biology is that most mammalian females lose the capacity for germ-cell renewal during fetal life, such that a fixed reserve of germ cells (oocytes) enclosed within follicles is endowed at birth. Here we show that juvenile and adult mouse ovaries possess mitotically active germ cells that, based on rates of oocyte degeneration (atresia) and clearance, are needed to continuously replenish the follicle pool. Consistent with this, treatment of prepubertal female mice with the mitotic germ-cell toxicant busulphan eliminates the primordial follicle reserve by early adulthood without inducing atresia. Furthermore, we demonstrate cells expressing the meiotic entry marker synaptonemal complex protein 3 in juvenile and adult mouse ovaries. Wild-type ovaries grafted into transgenic female mice with ubiquitous expression of green fluorescent protein (GFP) become infiltrated with GFP-positive germ cells that form follicles. Collectively, these data establish the existence of proliferative germ cells that sustain oocyte and follicle production in the postnatal mammalian ovary.
Hormonal Regulation of MicroRNA Expression in Periovulatory Mouse Mural Granulosa Cells
MicroRNAs (miRNAs) mediate posttranscriptional gene regulation by binding to the 3' untranslated region of messenger RNAs to either inhibit or enhance translation. The extent and hormonal regulation of miRNA expression by ovarian granulosa cells and their role in ovulation and luteinization is unknown. In the present study, miRNA array analysis was used to identify 212 mature miRNAs as expressed and 13 as differentially expressed in periovulatory granulosa cells collected before and after an ovulatory dose of hCG. Two miRNAs, Mirn132 and Mirn212 (also known as miR-132 and miR-212), were found to be highly upregulated following LH/hCG induction and were further analyzed. In vivo and in vitro temporal expression analysis by quantitative RT-PCR confirmed that LH/hCG and cAMP, respectively, increased transcription of the precursor transcript as well as the mature miRNAs. Locked nucleic acid oligonucleotides complementary to Mirn132 and Mirn212 were shown to block cAMP-mediated mature miRNA expression and function. Computational analyses indicated that 77 putative mRNA targets of Mirn132 and Mirn212 were expressed in ovarian granulosa cells. Furthermore, upon knockdown of Mirn132 and Mirn212, a known target of Mirn132, C-terminal binding protein 1, showed decreased protein levels but no change in mRNA levels. The following studies are the first to describe the extent of miRNA expression within ovarian granulosa cells and the first to demonstrate that LH/hCG regulates the expression of select miRNAs, which affect posttranscriptional gene regulation within these cells.
Menopause in Nonhuman Primates?
A gradual alteration in the mechanisms underlying reproduction and fertility characterizes the aging process in human females. These changes culminate in menopause, conventionally defined as a cessation of menstrual cycles that marks the end of reproductive capacity. In fact, a central and defining event in menopause is the discontinuation of ovulation, which is correlated with a number of structural and functional changes in the reproductive axis. Despite several decades of research, a degree of uncertainty remains as to whether nonhuman primates undergo menopause, and whether they are suitable models of human reproductive senescence. We review some of the controversies that have clouded our understanding of reproductive aging in nonhuman primates, including issues of definition, timing, comparability of data from wild versus captive populations, and cross-species comparisons. The existing data support the view that menopause occurs in a number of primate species and is not unique to humans.