Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,713
result(s) for
"Mammals - virology"
Sort by:
Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts
by
Streicker, Daniel G.
,
Mollentze, Nardus
in
Animals
,
Biological Sciences
,
Birds - classification
2020
The notion that certain animal groups disproportionately maintain and transmit viruses to humans due to broad-scale differences in ecology, life history, and physiology currently influences global health surveillance and research in disease ecology, virology, and immunology. To directly test whether such “special reservoirs” of zoonoses exist, we used literature searches to construct the largest existing dataset of virus–reservoir relationships, consisting of the avian and mammalian reservoir hosts of 415 RNA and DNA viruses along with their histories of human infection. Reservoir host effects on the propensity of viruses to have been reported as infecting humans were rare and when present were restricted to one or two viral families. The data instead support a largely host-neutral explanation for the distribution of human-infecting viruses across the animal orders studied. After controlling for higher baseline viral richness in mammals versus birds, the observed number of zoonoses per animal order increased as a function of their species richness. Animal orders of established importance as zoonotic reservoirs including bats and rodents were unexceptional, maintaining numbers of zoonoses that closely matched expectations for mammalian groups of their size. Our findings show that variation in the frequency of zoonoses among animal orders can be explained without invoking special ecological or immunological relationships between hosts and viruses, pointing to a need to reconsider current approaches aimed at finding and predicting novel zoonoses.
Journal Article
Climate change increases cross-species viral transmission risk
by
Carlson, Colin J.
,
Olival, Kevin J.
,
Eskew, Evan A.
in
631/158/852
,
631/158/855
,
631/326/596/2557
2022
At least 10,000 virus species have the ability to infect humans but, at present, the vast majority are circulating silently in wild mammals
1
,
2
. However, changes in climate and land use will lead to opportunities for viral sharing among previously geographically isolated species of wildlife
3
,
4
. In some cases, this will facilitate zoonotic spillover—a mechanistic link between global environmental change and disease emergence. Here we simulate potential hotspots of future viral sharing, using a phylogeographical model of the mammal–virus network, and projections of geographical range shifts for 3,139 mammal species under climate-change and land-use scenarios for the year 2070. We predict that species will aggregate in new combinations at high elevations, in biodiversity hotspots, and in areas of high human population density in Asia and Africa, causing the cross-species transmission of their associated viruses an estimated 4,000 times. Owing to their unique dispersal ability, bats account for the majority of novel viral sharing and are likely to share viruses along evolutionary pathways that will facilitate future emergence in humans. Notably, we find that this ecological transition may already be underway, and holding warming under 2 °C within the twenty-first century will not reduce future viral sharing. Our findings highlight an urgent need to pair viral surveillance and discovery efforts with biodiversity surveys tracking the range shifts of species, especially in tropical regions that contain the most zoonoses and are experiencing rapid warming.
Changes in climate and land use will lead to species aggregating in new combinations at high elevations, in biodiversity hotspots and in areas of high human population density in Asia and Africa, driving the cross-species transmission of animal-associated viruses.
Journal Article
Zoonotic host diversity increases in human-dominated ecosystems
by
Donnelly, Christl A.
,
Blackburn, Tim M.
,
Redding, David W.
in
631/158/670
,
631/158/851
,
631/158/858
2020
Land use change—for example, the conversion of natural habitats to agricultural or urban ecosystems—is widely recognized to influence the risk and emergence of zoonotic disease in humans
1
,
2
. However, whether such changes in risk are underpinned by predictable ecological changes remains unclear. It has been suggested that habitat disturbance might cause predictable changes in the local diversity and taxonomic composition of potential reservoir hosts, owing to systematic, trait-mediated differences in species resilience to human pressures
3
,
4
. Here we analyse 6,801 ecological assemblages and 376 host species worldwide, controlling for research effort, and show that land use has global and systematic effects on local zoonotic host communities. Known wildlife hosts of human-shared pathogens and parasites overall comprise a greater proportion of local species richness (18–72% higher) and total abundance (21–144% higher) in sites under substantial human use (secondary, agricultural and urban ecosystems) compared with nearby undisturbed habitats. The magnitude of this effect varies taxonomically and is strongest for rodent, bat and passerine bird zoonotic host species, which may be one factor that underpins the global importance of these taxa as zoonotic reservoirs. We further show that mammal species that harbour more pathogens overall (either human-shared or non-human-shared) are more likely to occur in human-managed ecosystems, suggesting that these trends may be mediated by ecological or life-history traits that influence both host status and tolerance to human disturbance
5
,
6
. Our results suggest that global changes in the mode and the intensity of land use are creating expanding hazardous interfaces between people, livestock and wildlife reservoirs of zoonotic disease.
Wildlife communities in human-managed ecosystems contain proportionally more species that share human pathogens, and at a higher abundance, than undisturbed habitats, suggesting that landscape transformation creates increasing opportunities for contact between humans and potential hosts of human disease.
Journal Article
Virus diversity, wildlife-domestic animal circulation and potential zoonotic viruses of small mammals, pangolins and zoo animals
2023
Wildlife is reservoir of emerging viruses. Here we identified 27 families of mammalian viruses from 1981 wild animals and 194 zoo animals collected from south China between 2015 and 2022, isolated and characterized the pathogenicity of eight viruses. Bats harbor high diversity of coronaviruses, picornaviruses and astroviruses, and a potentially novel genus of
Bornaviridae
. In addition to the reported SARSr-CoV-2 and HKU4-CoV-like viruses, picornavirus and respiroviruses also likely circulate between bats and pangolins. Pikas harbor a new clade of Embecovirus and a new genus of arenaviruses. Further, the potential cross-species transmission of RNA viruses (paramyxovirus and astrovirus) and DNA viruses (pseudorabies virus, porcine circovirus 2, porcine circovirus 3 and parvovirus) between wildlife and domestic animals was identified, complicating wildlife protection and the prevention and control of these diseases in domestic animals. This study provides a nuanced view of the frequency of host-jumping events, as well as assessments of zoonotic risk.
Monitoring the diversity of viruses infecting animals is important for assessing zoonotic risk. Here, the authors use metatranscriptomics to characterise the viromes of small mammals, pangolins, and zoo animals in China to identify potentially zoonotic viruses.
Journal Article
The episodic resurgence of highly pathogenic avian influenza H5 virus
by
Wille, Michelle
,
Wei, Xiaoman
,
El-Shesheny, Rabeh
in
631/158/855
,
631/181/735
,
631/326/596/1578
2023
Highly pathogenic avian influenza (HPAI) H5N1 activity has intensified globally since 2021, increasingly causing mass mortality in wild birds and poultry and incidental infections in mammals
1
–
3
. However, the ecological and virological properties that underscore future mitigation strategies still remain unclear. Using epidemiological, spatial and genomic approaches, we demonstrate changes in the origins of resurgent HPAI H5 and reveal significant shifts in virus ecology and evolution. Outbreak data show key resurgent events in 2016–2017 and 2020–2021, contributing to the emergence and panzootic spread of H5N1 in 2021–2022. Genomic analysis reveals that the 2016–2017 epizootics originated in Asia, where HPAI H5 reservoirs are endemic. In 2020–2021, 2.3.4.4b H5N8 viruses emerged in African poultry, featuring mutations altering
HA
structure and receptor binding. In 2021–2022, a new H5N1 virus evolved through reassortment in wild birds in Europe, undergoing further reassortment with low-pathogenic avian influenza in wild and domestic birds during global dissemination. These results highlight a shift in the HPAI H5 epicentre beyond Asia and indicate that increasing persistence of HPAI H5 in wild birds is facilitating geographic and host range expansion, accelerating dispersion velocity and increasing reassortment potential. As earlier outbreaks of H5N1 and H5N8 were caused by more stable genomic constellations, these recent changes reflect adaptation across the domestic-bird–wild-bird interface. Elimination strategies in domestic birds therefore remain a high priority to limit future epizootics.
Recent resurgences of highly pathogenic avian influenza H5 viruses have different origins and virus ecologies as their epicentres shift and viruses evolve, with changes indicating increased adaptation among domestic birds.
Journal Article
Relatives of rubella virus in diverse mammals
2020
Since 1814, when rubella was first described, the origins of the disease and its causative agent, rubella virus (
Matonaviridae
:
Rubivirus
), have remained unclear
1
. Here we describe ruhugu virus and rustrela virus in Africa and Europe, respectively, which are, to our knowledge, the first known relatives of rubella virus. Ruhugu virus, which is the closest relative of rubella virus, was found in apparently healthy cyclops leaf-nosed bats (
Hipposideros cyclops
) in Uganda. Rustrela virus, which is an outgroup to the clade that comprises rubella and ruhugu viruses, was found in acutely encephalitic placental and marsupial animals at a zoo in Germany and in wild yellow-necked field mice (
Apodemus flavicollis
) at and near the zoo. Ruhugu and rustrela viruses share an identical genomic architecture with rubella virus
2
,
3
. The amino acid sequences of four putative B cell epitopes in the fusion (E1) protein of the rubella, ruhugu and rustrela viruses and two putative T cell epitopes in the capsid protein of the rubella and ruhugu viruses are moderately to highly conserved
4
–
6
. Modelling of E1 homotrimers in the post-fusion state predicts that ruhugu and rubella viruses have a similar capacity for fusion with the host-cell membrane
5
. Together, these findings show that some members of the family
Matonaviridae
can cross substantial barriers between host species and that rubella virus probably has a zoonotic origin. Our findings raise concerns about future zoonotic transmission of rubella-like viruses, but will facilitate comparative studies and animal models of rubella and congenital rubella syndrome.
Ruhugu virus and rustrela virus are the first close relatives of rubella virus, providing insights into the zoonotic origin of rubella virus and the epidemiology and evolution of all three viruses.
Journal Article
Host and viral traits predict zoonotic spillover from mammals
2017
Analysis of a comprehensive database of mammalian host–virus relationships reveals that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable and that this enables identification of mammalian species and geographic locations where novel zoonoses are likely to be found.
Zoonotic virus distribution patterns
Zoonotic viruses, many originating in wild mammals, pose a serious threat to global public health. Peter Daszak and colleagues create a comprehensive database of mammalian host–virus relationships, which they analyse to determine patterns of virus and zoonotic virus distribution in mammals. They identify various factors that influence the number and diversity of viruses that infect a given species as well as factors that predict the proportion of zoonotic viruses per species. In doing so, they identify mammalian species and geographic locations where novel zoonoses are likely to be found.
The majority of human emerging infectious diseases are zoonotic, with viruses that originate in wild mammals of particular concern (for example, HIV, Ebola and SARS)
1
,
2
,
3
. Understanding patterns of viral diversity in wildlife and determinants of successful cross-species transmission, or spillover, are therefore key goals for pandemic surveillance programs
4
. However, few analytical tools exist to identify which host species are likely to harbour the next human virus, or which viruses can cross species boundaries
5
,
6
,
7
. Here we conduct a comprehensive analysis of mammalian host–virus relationships and show that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable. After controlling for research effort, the proportion of zoonotic viruses per species is predicted by phylogenetic relatedness to humans, host taxonomy and human population within a species range—which may reflect human–wildlife contact. We demonstrate that bats harbour a significantly higher proportion of zoonotic viruses than all other mammalian orders. We also identify the taxa and geographic regions with the largest estimated number of ‘missing viruses’ and ‘missing zoonoses’ and therefore of highest value for future surveillance. We then show that phylogenetic host breadth and other viral traits are significant predictors of zoonotic potential, providing a novel framework to assess if a newly discovered mammalian virus could infect people.
Journal Article
Detection and spread of high pathogenicity avian influenza virus H5N1 in the Antarctic Region
2024
Until recent events, the Antarctic was the only major geographical region in which high pathogenicity avian influenza virus (HPAIV) had never previously been detected. Here we report on the detection of clade 2.3.4.4b H5N1 HPAIV in the Antarctic and sub-Antarctic regions of South Georgia and the Falkland Islands, respectively. We initially detected H5N1 HPAIV in samples collected from brown skuas at Bird Island, South Georgia on 8th October 2023. Since this detection, mortalities were observed in several avian and mammalian species at multiple sites across South Georgia. Subsequent testing confirmed H5N1 HPAIV across several sampling locations in multiple avian species and two seal species. Simultaneously, we also confirmed H5N1 HPAIV in southern fulmar and black-browed albatross in the Falkland Islands. Genetic assessment of the virus indicates spread from South America, likely through movement of migratory birds. Critically, genetic assessment of sequences from mammalian species demonstrates no increased risk to human populations above that observed in other instances of mammalian infections globally. Here we describe the detection, species impact and genetic composition of the virus and propose both introductory routes and potential long-term impact on avian and mammalian species across the Antarctic region. We also speculate on the threat to specific populations following recent reports in the area.
High pathogenicity avian influenza virus has a wide host range and has been detected across a large geographic area. Here, the authors present evidence of spread to the Antarctic and sub-Antarctic regions, with signs of clinical infection and positive virus detection in birds and elephant seals.
Journal Article
Bats host major mammalian paramyxoviruses
by
Stöcker, Andreas
,
Franke, Carlos Roberto
,
Binger, Tabea
in
631/158
,
631/181/757
,
692/699/255/2514
2012
The large virus family
Paramyxoviridae
includes some of the most significant human and livestock viruses, such as measles-, distemper-, mumps-, parainfluenza-, Newcastle disease-, respiratory syncytial virus and metapneumoviruses. Here we identify an estimated 66 new paramyxoviruses in a worldwide sample of 119 bat and rodent species (9,278 individuals). Major discoveries include evidence of an origin of Hendra- and Nipah virus in Africa, identification of a bat virus conspecific with the human mumps virus, detection of close relatives of respiratory syncytial virus, mouse pneumonia- and canine distemper virus in bats, as well as direct evidence of Sendai virus in rodents. Phylogenetic reconstruction of host associations suggests a predominance of host switches from bats to other mammals and birds. Hypothesis tests in a maximum likelihood framework permit the phylogenetic placement of bats as tentative hosts at ancestral nodes to both the major
Paramyxoviridae
subfamilies (
Paramyxovirinae
and
Pneumovirinae
). Future attempts to predict the emergence of novel paramyxoviruses in humans and livestock will have to rely fundamentally on these data.
The large virus family,
Paramyxoviridae
, includes several human and livestock viruses. This study, testing 119 bat and rodent species distributed globally, identifies novel putative paramyxovirus species, providing data with potential uses in predictions of the emergence of novel paramyxoviruses in humans and livestock.
Journal Article
Mammalian Host-Versus-Phage immune response determines phage fate in vivo
2015
Emerging bacterial antibiotic resistance draws attention to bacteriophages as a therapeutic alternative to treat bacterial infection. Examples of phage that combat bacteria abound. However, despite careful testing of antibacterial activity
in vitro
, failures nevertheless commonly occur. We investigated immunological response of phage antibacterial potency
in vivo
. Anti-phage activity of phagocytes, antibodies and serum complement were identified by direct testing and by high-resolution fluorescent microscopy. We accommodated the experimental data into a mathematical model. We propose a universal schema of innate and adaptive immunity impact on phage pharmacokinetics, based on the results of our numerical simulations. We found that the mammalian-host response to infecting bacteria causes the concomitant removal of phage from the system. We propose the notion that this effect as an indirect pathway of phage inhibition by bacteria with significant relevance for the clinical outcome of phage therapy.
Journal Article