Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
195
result(s) for
"Mammary Glands, Human - abnormalities"
Sort by:
Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort
2015
Introduction
The Predicting Risk of Cancer at Screening study in Manchester, UK, is a prospective study of breast cancer risk estimation. It was designed to assess whether mammographic density may help in refinement of breast cancer risk estimation using either the Gail model (Breast Cancer Risk Assessment Tool) or the Tyrer-Cuzick model (International Breast Intervention Study model).
Methods
Mammographic density was measured at entry as a percentage visual assessment, adjusted for age and body mass index. Tyrer-Cuzick and Gail 10-year risks were based on a questionnaire completed contemporaneously. Breast cancers were identified at the entry screen or shortly thereafter. The contribution of density to risk models was assessed using odds ratios (ORs) with profile likelihood confidence intervals (CIs) and area under the receiver operating characteristic curve (AUC). The calibration of predicted ORs was estimated as a percentage [(observed vs expected (O/E)] from logistic regression.
Results
The analysis included 50,628 women aged 47–73 years who were recruited between October 2009 and September 2013. Of these, 697 had breast cancer diagnosed after enrolment. Median follow-up was 3.2 years. Breast density [interquartile range odds ratio (IQR-OR) 1.48, 95 % CI 1.34–1.63, AUC 0.59] was a slightly stronger univariate risk factor than the Tyrer-Cuzick model [IQR-OR 1.36 (95 % CI 1.25–1.48), O/E 60 % (95 % CI 44–74), AUC 0.57] or the Gail model [IQR-OR 1.22 (95 % CI 1.12–1.33), O/E 46 % (95 % CI 26–65 %), AUC 0.55]. It continued to add information after allowing for Tyrer-Cuzick [IQR-OR 1.47 (95 % CI 1.33–1.62), combined AUC 0.61] or Gail [IQR-OR 1.45 (95 % CI 1.32–1.60), combined AUC 0.59].
Conclusions
Breast density may be usefully combined with the Tyrer-Cuzick model or the Gail model.
Journal Article
Association of area- and volumetric-mammographic density and breast cancer risk in women of Asian descent: a case control study
2024
Background
Mammographic density (MD) has been shown to be a strong and independent risk factor for breast cancer in women of European and Asian descent. However, the majority of Asian studies to date have used BI-RADS as the scoring method and none have evaluated area and volumetric densities in the same cohort of women. This study aims to compare the association of MD measured by two automated methods with the risk of breast cancer in Asian women, and to investigate if the association is different for premenopausal and postmenopausal women.
Methods
In this case–control study of 531 cases and 2297 controls, we evaluated the association of area-based MD measures and volumetric-based MD measures with breast cancer risk in Asian women using conditional logistic regression analysis, adjusting for relevant confounders. The corresponding association by menopausal status were assessed using unconditional logistic regression.
Results
We found that both area and volume-based MD measures were associated with breast cancer risk. Strongest associations were observed for percent densities (OR (95% CI) was 2.06 (1.42–2.99) for percent dense area and 2.21 (1.44–3.39) for percent dense volume, comparing women in highest density quartile with those in the lowest quartile). The corresponding associations were significant in postmenopausal but not premenopausal women (premenopausal versus postmenopausal were 1.59 (0.95–2.67) and 1.89 (1.22–2.96) for percent dense area and 1.24 (0.70–2.22) and 1.96 (1.19–3.27) for percent dense volume). However, the odds ratios were not statistically different by menopausal status [
p
difference = 0.782 for percent dense area and 0.486 for percent dense volume].
Conclusions
This study confirms the associations of mammographic density measured by both area and volumetric methods and breast cancer risk in Asian women. Stronger associations were observed for percent dense area and percent dense volume, and strongest effects were seen in postmenopausal individuals.
Journal Article
Preliminary evaluation of the publicly available Laboratory for Breast Radiodensity Assessment (LIBRA) software tool: comparison of fully automated area and volumetric density measures in a case–control study with digital mammography
by
Chen, Jinbo
,
Keller, Brad M.
,
Kontos, Despina
in
Biomedical and Life Sciences
,
Biomedicine
,
Breast - pathology
2015
Introduction
Breast density, commonly quantified as the percentage of mammographically dense tissue area, is a strong breast cancer risk factor. We investigated associations between breast cancer and fully automated measures of breast density made by a new publicly available software tool, the Laboratory for Individualized Breast Radiodensity Assessment (LIBRA).
Methods
Digital mammograms from 106 invasive breast cancer cases and 318 age-matched controls were retrospectively analyzed. Density estimates acquired by LIBRA were compared with commercially available software and standard Breast Imaging-Reporting and Data System (BI-RADS) density estimates. Associations between the different density measures and breast cancer were evaluated by using logistic regression after adjustment for Gail risk factors and body mass index (BMI). Area under the curve (AUC) of the receiver operating characteristic (ROC) was used to assess discriminatory capacity, and odds ratios (ORs) for each density measure are provided.
Results
All automated density measures had a significant association with breast cancer (OR = 1.47–2.23, AUC = 0.59–0.71,
P
< 0.01) which was strengthened after adjustment for Gail risk factors and BMI (OR = 1.96–2.64, AUC = 0.82–0.85,
P
< 0.001). In multivariable analysis, absolute dense area (OR = 1.84,
P
< 0.001) and absolute dense volume (OR = 1.67,
P
= 0.003) were jointly associated with breast cancer (AUC = 0.77,
P
< 0.01), having a larger discriminatory capacity than models considering the Gail risk factors alone (AUC = 0.64,
P
< 0.001) or the Gail risk factors plus standard area percent density (AUC = 0.68,
P
= 0.01). After BMI was further adjusted for, absolute dense area retained significance (OR = 2.18,
P
< 0.001) and volume percent density approached significance (OR = 1.47,
P
= 0.06). This combined area-volume density model also had a significantly (
P
< 0.001) improved discriminatory capacity (AUC = 0.86) relative to a model considering the Gail risk factors plus BMI (AUC = 0.80).
Conclusions
Our study suggests that new automated density measures may ultimately augment the current standard breast cancer risk factors. In addition, the ability to fully automate density estimation with digital mammography, particularly through the use of publically available breast density estimation software, could accelerate the translation of density reporting in routine breast cancer screening and surveillance protocols and facilitate broader research into the use of breast density as a risk factor for breast cancer.
Journal Article
Agreement of Mammographic Measures of Volumetric Breast Density to MRI
2013
Clinical scores of mammographic breast density are highly subjective. Automated technologies for mammography exist to quantify breast density objectively, but the technique that most accurately measures the quantity of breast fibroglandular tissue is not known.
To compare the agreement of three automated mammographic techniques for measuring volumetric breast density with a quantitative volumetric MRI-based technique in a screening population.
Women were selected from the UCSF Medical Center screening population that had received both a screening MRI and digital mammogram within one year of each other, had Breast Imaging Reporting and Data System (BI-RADS) assessments of normal or benign finding, and no history of breast cancer or surgery. Agreement was assessed of three mammographic techniques (Single-energy X-ray Absorptiometry [SXA], Quantra, and Volpara) with MRI for percent fibroglandular tissue volume, absolute fibroglandular tissue volume, and total breast volume.
Among 99 women, the automated mammographic density techniques were correlated with MRI measures with R(2) values ranging from 0.40 (log fibroglandular volume) to 0.91 (total breast volume). Substantial agreement measured by kappa statistic was found between all percent fibroglandular tissue measures (0.72 to 0.63), but only moderate agreement for log fibroglandular volumes. The kappa statistics for all percent density measures were highest in the comparisons of the SXA and MRI results. The largest error source between MRI and the mammography techniques was found to be differences in measures of total breast volume.
Automated volumetric fibroglandular tissue measures from screening digital mammograms were in substantial agreement with MRI and if associated with breast cancer could be used in clinical practice to enhance risk assessment and prevention.
Journal Article
Associations between quantitative measures of mammographic density and terminal ductal lobular unit involution in Chinese breast cancer patients
2024
Background
Higher mammographic density (MD), a radiological measure of the proportion of fibroglandular tissue in the breast, and lower terminal duct lobular unit (TDLU) involution, a histological measure of the amount of epithelial tissue in the breast, are independent breast cancer risk factors. Previous studies among predominantly white women have associated reduced TDLU involution with higher MD.
Methods
In this cohort of 611 invasive breast cancer patients (ages 23–91 years [58.4% ≥ 50 years]) from China, where breast cancer incidence rates are lower and the prevalence of dense breasts is higher compared with Western countries, we examined the associations between TDLU involution assessed in tumor-adjacent normal breast tissue and quantitative MD assessed in the contralateral breast obtained from the VolparaDensity software. Associations were estimated using generalized linear models with MD measures as the outcome variables (log-transformed), TDLU measures as explanatory variables (categorized into quartiles or tertiles), and adjusted for age, body mass index, parity, age at menarche and breast cancer subtype.
Results
We found that, among all women, percent dense volume (PDV) was positively associated with TDLU count (highest tertile vs. zero: Exp
beta
= 1.28, 95% confidence interval [CI] 1.08–1.51, p
trend
= < .0001), TDLU span (highest vs. lowest tertile: Exp
beta
= 1.23, 95% CI 1.11–1.37, p
trend
= < .0001) and acini count/TDLU (highest vs. lowest tertile: Exp
beta
= 1.22, 95% CI 1.09–1.37, p
trend
= 0.0005), while non-dense volume (NDV) was inversely associated with these measures. Similar trend was observed for absolute dense volume (ADV) after the adjustment of total breast volume, although the associations for ADV were in general weaker than those for PDV. The MD-TDLU associations were generally more pronounced among breast cancer patients ≥ 50 years and those with luminal A tumors compared with patients < 50 years and with luminal B tumors.
Conclusions
Our findings based on quantitative MD and TDLU involution measures among Chinese breast cancer patients are largely consistent with those reported in Western populations and may provide additional insights into the complexity of the relationship, which varies by age, and possibly breast cancer subtype.
Journal Article
Mammographic density—a review on the current understanding of its association with breast cancer
by
Ingman, W. V.
,
Thompson, E. W.
,
Britt, K. L.
in
Breast - pathology
,
Breast cancer
,
Breast Density
2014
There has been considerable recent interest in the genetic, biological and epidemiological basis of mammographic density (MD), and the search for causative links between MD and breast cancer (BC) risk. This report will critically review the current literature on MD and summarize the current evidence for its association with BC. Keywords ‘mammographic dens*’, ‘dense mammary tissue’ or ‘percent dens*’ were used to search the existing literature in English on PubMed and Medline. All reports were critically analyzed. The data were assigned to one of the following aspects of MD: general association with BC, its relationship with the breast hormonal milieu, the cellular basis of MD, the generic variations of MD, and its significance in the clinical setting. MD adjusted for age, and BMI is associated with increased risk of BC diagnosis, advanced tumour stage at diagnosis and increased risk of both local recurrence and second primary cancers. The MD measures that predict BC risk have high heritability, and to date several genetic markers associated with BC risk have been found to also be associated with these MD risk predictors. Change in MD could be a predictor of the extent of chemoprevention with tamoxifen. Although the biological and genetic pathways that determine and perhaps modulate MD remain largely unresolved, significant inroads are being made into the understanding of MD, which may lead to benefits in clinical screening, assessment and treatment strategies. This review provides a timely update on the current understanding of MD’s association with BC risk.
Journal Article
High mammographic density is associated with an increase in stromal collagen and immune cells within the mammary epithelium
by
Brown, Kristy A.
,
Britt, Kara
,
Thompson, Erik W.
in
Adult
,
Analysis
,
Biomarkers, Tumor - metabolism
2015
Introduction
Mammographic density (MD), after adjustment for a women’s age and body mass index, is a strong and independent risk factor for breast cancer (BC). Although the BC risk attributable to increased MD is significant in healthy women, the biological basis of high mammographic density (HMD) causation and how it raises BC risk remain elusive. We assessed the histological and immunohistochemical differences between matched HMD and low mammographic density (LMD) breast tissues from healthy women to define which cell features may mediate the increased MD and MD-associated BC risk.
Methods
Tissues were obtained between 2008 and 2013 from 41 women undergoing prophylactic mastectomy because of their high BC risk profile. Tissue slices resected from the mastectomy specimens were X-rayed, then HMD and LMD regions were dissected based on radiological appearance. The histological composition, aromatase immunoreactivity, hormone receptor status and proliferation status were assessed, as were collagen amount and orientation, epithelial subsets and immune cell status.
Results
HMD tissue had a significantly greater proportion of stroma, collagen and epithelium, as well as less fat, than LMD tissue did. Second harmonic generation imaging demonstrated more organised stromal collagen in HMD tissues than in LMD tissues. There was significantly more aromatase immunoreactivity in both the stromal and glandular regions of HMD tissues than in those regions of LMD tissues, although no significant differences in levels of oestrogen receptor, progesterone receptor or Ki-67 expression were detected. The number of macrophages within the epithelium or stroma did not change; however, HMD stroma exhibited less CD206
+
alternatively activated macrophages. Epithelial cell maturation was not altered in HMD samples, and no evidence of epithelial–mesenchymal transition was seen; however, there was a significant increase in vimentin
+
/CD45
+
immune cells within the epithelial layer in HMD tissues.
Conclusions
We confirmed increased proportions of stroma and epithelium, increased aromatase activity and no changes in hormone receptor or Ki-67 marker status in HMD tissue. The HMD region showed increased collagen deposition and organisation as well as decreased alternatively activated macrophages in the stroma. The HMD epithelium may be a site for local inflammation, as we observed a significant increase in CD45
+
/vimentin
+
immune cells in this area.
Journal Article
Reproductive factors and mammographic density within the International Consortium of Mammographic Density: A cross-sectional study
2024
Background
Elevated mammographic density (MD) for a woman’s age and body mass index (BMI) is an established breast cancer risk factor. The relationship of parity, age at first birth, and breastfeeding with MD is less clear. We examined the associations of these factors with MD within the International Consortium of Mammographic Density (ICMD).
Methods
ICMD is a consortium of 27 studies with pooled individual-level epidemiological and MD data from 11,755 women without breast cancer aged 35–85 years from 22 countries, capturing 40 country-& ethnicity-specific population groups. MD was measured using the area-based tool Cumulus. Meta-analyses across population groups and pooled analyses were used to examine linear regression associations of square-root (√) transformed MD measures (percent MD (PMD), dense area (DA), and non-dense area (NDA)) with parity, age at first birth, ever/never breastfed and lifetime breastfeeding duration. Models were adjusted for age at mammogram, age at menarche, BMI, menopausal status, use of hormone replacement therapy, calibration method, mammogram view and reader, and parity and age at first birth when not the association of interest.
Results
Among 10,988 women included in these analyses, 90.1% (n = 9,895) were parous, of whom 13% (n = 1,286) had ≥ five births. The mean age at first birth was 24.3 years (Standard deviation = 5.1). Increasing parity (per birth) was inversely associated with √PMD (β: − 0.05, 95% confidence interval (CI): − 0.07, − 0.03) and √DA (β: − 0.08, 95% CI: − 0.12, − 0.05) with this trend evident until at least nine births. Women who were older at first birth (per five-year increase) had higher √PMD (β:0.06, 95% CI:0.03, 0.10) and √DA (β:0.06, 95% CI:0.02, 0.10), and lower √NDA (β: − 0.06, 95% CI: − 0.11, − 0.01). In stratified analyses, this association was only evident in women who were post-menopausal at MD assessment. Among parous women, no associations were found between ever/never breastfed or lifetime breastfeeding duration (per six-month increase) and √MD.
Conclusions
Associations with higher parity and older age at first birth with √MD were consistent with the direction of their respective associations with breast cancer risk. Further research is needed to understand reproductive factor-related differences in the composition of breast tissue and their associations with breast cancer risk.
Journal Article
Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk
by
Baglietto, Laura
,
Giles, Graham G.
,
Helvie, Mark A.
in
631/208/68
,
631/67/1347
,
Adipose tissue
2014
Mammographic density reflects the amount of stromal and epithelial tissues in relation to adipose tissue in the breast and is a strong risk factor for breast cancer. Here we report the results from meta-analysis of genome-wide association studies (GWAS) of three mammographic density phenotypes: dense area, non-dense area and percent density in up to 7,916 women in stage 1 and an additional 10,379 women in stage 2. We identify genome-wide significant (
P
<5 × 10
−8
) loci for dense area (
AREG, ESR1, ZNF365, LSP1/TNNT3, IGF1, TMEM184B
and
SGSM3/MKL1
), non-dense area (8p11.23) and percent density (
PRDM6, 8p11.23
and
TMEM184B
). Four of these regions are known breast cancer susceptibility loci, and four additional regions were found to be associated with breast cancer (
P
<0.05) in a large meta-analysis. These results provide further evidence of a shared genetic basis between mammographic density and breast cancer and illustrate the power of studying intermediate quantitative phenotypes to identify putative disease-susceptibility loci.
Mammographic density is a strong risk factor for breast cancer. Here, the authors identify several new loci associated dense area, non-dense area and percent density, and highlight a shared genetic basis for mammographic density and breast cancer.
Journal Article
Increased peri-ductal collagen micro-organization may contribute to raised mammographic density
2016
Background
High mammographic density is a therapeutically modifiable risk factor for breast cancer. Although mammographic density is correlated with the relative abundance of collagen-rich fibroglandular tissue, the causative mechanisms, associated structural remodelling and mechanical consequences remain poorly defined. In this study we have developed a new collaborative bedside-to-bench workflow to determine the relationship between mammographic density, collagen abundance and alignment, tissue stiffness and the expression of extracellular matrix organising proteins.
Methods
Mammographic density was assessed in 22 post-menopausal women (aged 54–66 y). A radiologist and a pathologist identified and excised regions of elevated non-cancerous X-ray density prior to laboratory characterization. Collagen abundance was determined by both Masson’s trichrome and Picrosirius red staining (which enhances collagen birefringence when viewed under polarised light). The structural specificity of these collagen visualisation methods was determined by comparing the relative birefringence and ultrastructure (visualised by atomic force microscopy) of unaligned collagen I fibrils in reconstituted gels with the highly aligned collagen fibrils in rat tail tendon. Localised collagen fibril organisation and stiffness was also evaluated in tissue sections by atomic force microscopy/spectroscopy and the abundance of key extracellular proteins was assessed using mass spectrometry.
Results
Mammographic density was positively correlated with the abundance of aligned periductal fibrils rather than with the abundance of amorphous collagen. Compared with matched tissue resected from the breasts of low mammographic density patients, the highly birefringent tissue in mammographically dense breasts was both significantly stiffer and characterised by large (>80 μm long) fibrillar collagen bundles. Subsequent proteomic analyses not only confirmed the absence of collagen fibrosis in high mammographic density tissue, but additionally identified the up-regulation of periostin and collagen XVI (regulators of collagen fibril structure and architecture) as potential mediators of localised mechanical stiffness.
Conclusions
These preliminary data suggest that remodelling, and hence stiffening, of the existing stromal collagen microarchitecture promotes high mammographic density within the breast. In turn, this aberrant mechanical environment may trigger neoplasia-associated mechanotransduction pathways within the epithelial cell population.
Journal Article