Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,693
result(s) for
"Mammary Neoplasms, Experimental"
Sort by:
Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner
by
Stylianopoulos, Triantafyllos
,
Martin, John D.
,
Popović, Zoran
in
631/67/1059
,
639/925/352/2733
,
Angiogenesis Inhibitors - pharmacology
2012
The blood vessels of cancerous tumours are leaky
1
,
2
,
3
and poorly organized
4
,
5
,
6
,
7
. This can increase the interstitial fluid pressure inside tumours and reduce blood supply to them, which impairs drug delivery
8
,
9
. Anti-angiogenic therapies—which ‘normalize’ the abnormal blood vessels in tumours by making them less leaky—have been shown to improve the delivery and effectiveness of chemotherapeutics with low molecular weights
10
, but it remains unclear whether normalizing tumour vessels can improve the delivery of nanomedicines. Here, we show that repairing the abnormal vessels in mammary tumours, by blocking vascular endothelial growth factor receptor-2, improves the delivery of smaller nanoparticles (diameter, 12 nm) while hindering the delivery of larger nanoparticles (diameter, 125 nm). Using a mathematical model, we show that reducing the sizes of pores in the walls of vessels through normalization decreases the interstitial fluid pressure in tumours, thus allowing small nanoparticles to enter them more rapidly. However, increased steric and hydrodynamic hindrances, also associated with smaller pores, make it more difficult for large nanoparticles to enter tumours. Our results further suggest that smaller (∼12 nm) nanomedicines are ideal for cancer therapy due to their superior tumour penetration.
Repairing the blood vessels in cancerous tumours can improve the delivery of small nanoparticles.
Journal Article
Targeting the disordered C terminus of PTP1B with an allosteric inhibitor
by
Tonks, Nicholas K
,
Jensen, Malene Ringkjøbing
,
Gauss, Carla-Maria
in
101/6
,
631/154/556
,
631/45
2014
The allosteric binding of MSI-1436 to the intrinsically disordered C-terminal region of PTP1B promotes a conformational change to generate a compact inactive structure, validating the use of MSI-1436 to inhibit HER2-mediated tumorigenesis.
PTP1B, a validated therapeutic target for diabetes and obesity, has a critical positive role in HER2 signaling in breast tumorigenesis. Efforts to develop therapeutic inhibitors of PTP1B have been frustrated by the chemical properties of the active site. We define a new mechanism of allosteric inhibition that targets the C-terminal, noncatalytic segment of PTP1B. We present what is to our knowledge the first ensemble structure of PTP1B containing this intrinsically disordered segment, within which we identified a binding site for the small-molecule inhibitor MSI-1436. We demonstrate binding to a second site close to the catalytic domain, with cooperative effects between the two sites locking PTP1B in an inactive state. MSI-1436 antagonized HER2 signaling, inhibited tumorigenesis in xenografts and abrogated metastasis in the NDL2 mouse model of breast cancer, validating inhibition of PTP1B as a therapeutic strategy in breast cancer. This new approach to inhibition of PTP1B emphasizes the potential of disordered segments of proteins as specific binding sites for therapeutic small molecules.
Journal Article
PI3Kβ controls immune evasion in PTEN-deficient breast tumours
2023
Loss of the PTEN tumour suppressor is one of the most common oncogenic drivers across all cancer types
1
. PTEN is the major negative regulator of PI3K signalling. The PI3Kβ isoform has been shown to play an important role in PTEN-deficient tumours, but the mechanisms underlying the importance of PI3Kβ activity remain elusive. Here, using a syngeneic genetically engineered mouse model of invasive breast cancer driven by ablation of both
Pten
and
Trp53
(which encodes p53), we show that genetic inactivation of PI3Kβ led to a robust anti-tumour immune response that abrogated tumour growth in syngeneic immunocompetent mice, but not in immunodeficient mice. Mechanistically, PI3Kβ inactivation in the PTEN-null setting led to reduced STAT3 signalling and increased the expression of immune stimulatory molecules, thereby promoting anti-tumour immune responses. Pharmacological PI3Kβ inhibition also elicited anti-tumour immunity and synergized with immunotherapy to inhibit tumour growth. Mice with complete responses to the combined treatment displayed immune memory and rejected tumours upon re-challenge. Our findings demonstrate a molecular mechanism linking PTEN loss and STAT3 activation in cancer and suggest that PI3Kβ controls immune escape in PTEN-null tumours, providing a rationale for combining PI3Kβ inhibitors with immunotherapy for the treatment of PTEN-deficient breast cancer.
A mouse model of invasive breast cancer in which
Pten
and
Trp53
are simultaneously inactivated links PTEN loss with STAT3 activation and indicates that immune escape in PTEN-null tumours is mediated by PI3Kβ.
Journal Article
Increased vessel perfusion predicts the efficacy of immune checkpoint blockade
2018
Immune checkpoint blockade (ICB) has demonstrated curative potential in several types of cancer, but only for a small number of patients. Thus, the identification of reliable and noninvasive biomarkers for predicting ICB responsiveness is an urgent unmet need. Here, we show that ICB increased tumor vessel perfusion in treatment-sensitive EO771 and MMTV-PyVT breast tumor as well as CT26 and MCA38 colon tumor models, but not in treatment-resistant MCaP0008 and 4T1 breast tumor models. In the sensitive tumor models, the ability of anti-cytotoxic T lymphocyte-associated protein 4 or anti-programmed cell death 1 therapy to increase vessel perfusion strongly correlated with its antitumor efficacy. Moreover, globally enhanced tumor vessel perfusion could be detected by Doppler ultrasonography before changes in tumor size, which predicted final therapeutic efficacy with more than 90% sensitivity and specificity. Mechanistically, CD8+ T cell depletion, IFN-γ neutralization, or implantation of tumors in IFN-γ receptor knockout mice abrogated the vessel perfusion enhancement and antitumor effects of ICB. These results demonstrated that ICB increased vessel perfusion by promoting CD8+ T cell accumulation and IFN-γ production, indicating that increased vessel perfusion reflects the successful activation of antitumor T cell immunity by ICB. Our findings suggest that vessel perfusion can be used as a novel noninvasive indicator for predicting ICB responsiveness.
Journal Article
Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance
2015
The role of epithelial-to-mesenchymal transition (EMT) in metastasis is a longstanding source of debate, largely owing to an inability to monitor transient and reversible EMT phenotypes
in vivo
. Here we establish an EMT lineage-tracing system to monitor this process in mice, using a mesenchymal-specific Cre-mediated fluorescent marker switch system in spontaneous breast-to-lung metastasis models. We show that within a predominantly epithelial primary tumour, a small proportion of tumour cells undergo EMT. Notably, lung metastases mainly consist of non-EMT tumour cells that maintain their epithelial phenotype. Inhibiting EMT by overexpressing the microRNA miR-200 does not affect lung metastasis development. However, EMT cells significantly contribute to recurrent lung metastasis formation after chemotherapy. These cells survived cyclophosphamide treatment owing to reduced proliferation, apoptotic tolerance and increased expression of chemoresistance-related genes. Overexpression of miR-200 abrogated this resistance. This study suggests the potential of an EMT-targeting strategy, in conjunction with conventional chemotherapies, for breast cancer treatment.
An epithelial-to-mesenchymal transition (EMT) lineage-tracing system in a mouse model of breast-to-lung metastasis reveals that although some cells undergo EMT in a primary epithelial tumour, the lung metastases mainly arise from cells that have not undergone EMT; in addition, cells that have undergone EMT appear more resistant to chemotherapy.
No requirement for EMT in metastasis
It has been suggested that epithelial-to-mesenchymal transition (EMT), in which epithelial cells depolarize and adopt a fibroblast-like morphology, is a requirement for metastasis to occur. Other studies imply that the importance of EMT relies on cell-culture-based manipulation of EMT regulators. In this issue of
Nature
, two groups present results that suggest that EMT is not a prerequisite for metasasis. Dingcheng Gao and colleagues trace the fate of cells that have undergone EMT in mouse model for breast-to-lung metastasis. They find that although some cells undergo EMT in a primary epithelial tumour, the lung metastases mainly contain cells that have not undergone EMT. However, cells that have undergone EMT appear more resistant to chemotherapy. A microRNA that targets key EMT regulators is shown not to affect metastasis, but to reduce survival of EMT cells following chemotherapy. Raghu Kalluri and colleagues delete Twist or Snail — transcription factors that induce EMT — in a mouse model for pancreatic ductal adenocarcinoma. This leads to an increase in cell proliferation, and a greater sensitivity to chemotherapeutic agent gemcitabine, with no effect on invasion and metastasis.
Journal Article
Gpr132 sensing of lactate mediates tumor–macrophage interplay to promote breast cancer metastasis
2017
Macrophages are prominent immune cells in the tumor microenvironment that exert potent effects on cancer metastasis. However, the signals and receivers for the tumor–macrophage communication remain enigmatic. Here, we show that G protein-coupled receptor 132 (Gpr132) functions as a key macrophage sensor of the rising lactate in the acidic tumor milieu to mediate the reciprocal interaction between cancer cells and macrophages during breast cancer metastasis. Lactate activates macrophage Gpr132 to promote the alternatively activated macrophage (M2)-like phenotype, which, in turn, facilitates cancer cell adhesion, migration, and invasion. Consequently, Gpr132 deletion reduces M2 macrophages and impedes breast cancer lung metastasis in mice. Clinically, Gpr132 expression positively correlates with M2 macrophages, metastasis, and poor prognosis in patients with breast cancer. These findings uncover the lactate-Gpr132 axis as a driver of breast cancer metastasis by stimulating tumor–macrophage interplay, and reveal potential new therapeutic targets for breast cancer treatment.
Journal Article
Long noncoding RNA MALAT1 suppresses breast cancer metastasis
2018
MALAT1 has previously been described as a metastasis-promoting long noncoding RNA (lncRNA). We show here, however, that targeted inactivation of the
Malat1
gene in a transgenic mouse model of breast cancer, without altering the expression of its adjacent genes, promotes lung metastasis, and that this phenotype can be reversed by genetic add-back of
Malat1
. Similarly, knockout of MALAT1 in human breast cancer cells induces their metastatic ability, which is reversed by re-expression of Malat1. Conversely, overexpression of Malat1 suppresses breast cancer metastasis in transgenic, xenograft, and syngeneic models. Mechanistically, the MALAT1 lncRNA binds and inactivates the prometastatic transcription factor TEAD, preventing TEAD from associating with its co-activator YAP and target gene promoters. Moreover, MALAT1 levels inversely correlate with breast cancer progression and metastatic ability. These findings demonstrate that MALAT1 is a metastasis-suppressing lncRNA rather than a metastasis promoter in breast cancer, calling for rectification of the model for this highly abundant and conserved lncRNA.
Targeted inactivation, restoration and overexpression of MALAT1 in multiple in vivo models demonstrate that the lncRNA MALAT1 suppresses breast cancer metastasis through binding and inactivation of the pro-metastatic transcription factor TEAD.
Journal Article
Matrix Metalloproteinase-Induced Epithelial-Mesenchymal Transition in Breast Cancer
2010
Matrix metalloproteinases (MMPs) degrade and modify the extracellular matrix (ECM) as well as cell-ECM and cell-cell contacts, facilitating detachment of epithelial cells from the surrounding tissue. MMPs play key functions in embryonic development and mammary gland branching morphogenesis, but they are also upregulated in breast cancer, where they stimulate tumorigenesis, cancer cell invasion and metastasis. MMPs have been investigated as potential targets for cancer therapy, but clinical trials using broad-spectrum MMP inhibitors yielded disappointing results, due in part to lack of specificity toward individual MMPs and specific stages of tumor development. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells take on the characteristics of invasive mesenchymal cells, and activation of EMT has been implicated in tumor progression. Recent findings have implicated MMPs as promoters and mediators of developmental and pathogenic EMT processes in the breast. In this review, we will summarize recent studies showing how MMPs activate EMT in mammary gland development and in breast cancer, and how MMPs mediate breast cancer cell motility, invasion, and EMT-driven breast cancer progression. We also suggest approaches to inhibit these MMP-mediated malignant processes for therapeutic benefit.
Journal Article
A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate
2016
A quantitative high-throughput screen identified an inhibitor of phosphoglycerate dehydrogenase (PHGDH), a key enzyme for serine synthesis. This inhibitor limits one-carbon unit availability for nucleotide synthesis.
Serine is both a proteinogenic amino acid and the source of one-carbon units essential for
de novo
purine and deoxythymidine synthesis. In the canonical pathway of glucose-derived serine synthesis,
Homo sapiens
phosphoglycerate dehydrogenase (PHGDH) catalyzes the first, rate-limiting step. Genetic loss of PHGDH is toxic toward PHGDH-overexpressing breast cancer cell lines even in the presence of exogenous serine. Here, we used a quantitative high-throughput screen to identify small-molecule PHGDH inhibitors. These compounds reduce the production of glucose-derived serine in cells and suppress the growth of PHGDH-dependent cancer cells in culture and in orthotopic xenograft tumors. Surprisingly, PHGDH inhibition reduced the incorporation into nucleotides of one-carbon units from glucose-derived and exogenous serine. We conclude that glycolytic serine synthesis coordinates the use of one-carbon units from endogenous and exogenous serine in nucleotide synthesis, and we suggest that one-carbon unit wasting thus may contribute to the efficacy of PHGDH inhibitors
in vitro
and
in vivo
.
Journal Article
ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition
2017
ACSL4 is critical for induction of ferroptosis, a programmed form of necrotic cell death, through the production of long polyunsaturated fatty acids that can be inhibited in an
in vivo
ferroptosis model with a small molecule ACSL4 inhibitor.
Ferroptosis is a form of regulated necrotic cell death controlled by glutathione peroxidase 4 (GPX4). At present, mechanisms that could predict sensitivity and/or resistance and that may be exploited to modulate ferroptosis are needed. We applied two independent approaches—a genome-wide CRISPR-based genetic screen and microarray analysis of ferroptosis-resistant cell lines—to uncover acyl-CoA synthetase long-chain family member 4 (ACSL4) as an essential component for ferroptosis execution. Specifically,
Gpx4
–
Acsl4
double-knockout cells showed marked resistance to ferroptosis. Mechanistically, ACSL4 enriched cellular membranes with long polyunsaturated ω6 fatty acids. Moreover, ACSL4 was preferentially expressed in a panel of basal-like breast cancer cell lines and predicted their sensitivity to ferroptosis. Pharmacological targeting of ACSL4 with thiazolidinediones, a class of antidiabetic compound, ameliorated tissue demise in a mouse model of ferroptosis, suggesting that ACSL4 inhibition is a viable therapeutic approach to preventing ferroptosis-related diseases.
Journal Article