Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
2,254 result(s) for "Maple sugar"
Sort by:
Bear goes sugaring
\"Learn how to make syrup the old fashioned way with the help of a friendly bear and her amusingly unhelpful accomplices Dog and Squirrel in this informative comics-style picture book.\"-- Provided by publisher.
Fertilization effects on fineroot biomass, rhizosphere microbes and respiratory fluxes in hardwood forest soils
Fertilizer-induced reductions in CO₂ flux from soil ( [graphic removed] ) in forests have previously been attributed to decreased carbon allocation to roots, and decreased decomposition as a result of nitrogen suppression of fungal activity. Here, we present evidence that decreased microbial respiration in the rhizosphere may also contribute to [graphic removed] reductions in fertilized forest soils. Fertilization reduced [graphic removed] by 16-19% in 65-yr-old plantations of northern red oak (Quercus rubra) and sugar maple (Acer saccharum), and in a natural 85-yr-old yellow birch (Betula allegheniensis) stand. In oak plots, fertilization had no effects on fine root biomass but reduced mycorrhizal colonization by 18% and microbial respiration by 43%. In maple plots, fertilization reduced root biomass, mycorrhizal colonization and microbial respiration by 22, 16 and 46%, respectively. In birch plots, fertilization reduced microbial respiration by 36%, but had variable effects on root biomass and mycorrhizal colonization. In plots of all three species, fertilization effects on microbial respiration were greater in rhizosphere than in bulk soil, possibly as a result of decreased rhizosphere carbon flux from these species in fertile soils. Because rhizosphere processes may influence nutrient availability and carbon storage in forest ecosystems, future research is needed to better quantify rhizo-microbial contributions to [graphic removed] .
Sugar maple growth in relation to nutrition and stress in the northeastern United States
Sugar maple, Acer saccharum, decline disease is incited by multiple disturbance factors when imbalanced calcium (Ca), magnesium (Mg), and manganese (Mn) act as predisposing Stressors. Our objective in this study was to determine whether factors affecting sugar maple health also affect growth as estimated by basal area increment (BAI). We used 76 northern hardwood stands in northern Pennsylvania, New York, Vermont, and New Hampshire, USA, and found that sugar maple growth was positively related to foliar concentrations of Ca and Mg and stand level estimates of sugar maple crown health during a high stress period from 1987 to 1996. Foliar nutrient threshold values for Ca, Mg, and Mn were used to analyze long-term BAI trends from 1937 to 1996. Significant (P < 0.05) nutrient threshold-by-time interactions indicate changing growth in relation to nutrition during this period. Healthy sugar maples sampled in the 1990s had decreased growth in the 1970s, 10-20 years in advance of the 1980s and 1990s decline episode in Pennsylvania. Even apparently healthy stands that had no defoliation, but had below-threshold amounts of Ca or Mg and above-threshold Mn (from foliage samples taken in the mid 1990s), had decreasing growth by the 1970s. Co-occurring black cherry, Prunus serótina, in a subset of the Pennsylvania and New York stands, showed opposite growth responses with greater growth in stands with below-threshold Ca and Mg compared with above-threshold stands. Sugar maple growing on sites with the highest concentrations of foliar Ca and Mg show a general increase in growth from 1937 to 1996 while other stands with lower Ca and Mg concentrations show a stable or decreasing growth trend. We conclude that acid deposition induced changes in soil nutrient status that crossed a threshold necessary to sustain sugar maple growth during the 1970s on some sites. While nutrition of these elements has not been considered in forest management decisions, our research shows species specific responses to Ca and Mg that may reduce health and growth of sugar maple or change species composition, if not addressed.
Meanings of Maple
InMeanings of Maple, Michael A. Lange provides a cultural analysis of maple syrup making, known in Vermont as sugaring, to illustrate how maple syrup as both process and product is an aspect of cultural identity.Readers will go deep into a Vermont sugar bush and its web of plastic tubes, mainline valves, and collection tanks. They will visit sugarhouses crammed with gas evaporators and reverse-osmosis machines. And they will witness encounters between sugar makers and the tourists eager to invest Vermont with mythological fantasies of rural simplicity.So much more than a commodity study,Meanings of Mapleframes a new approach for evaluating the broader implications of iconic foodways, and it will animate conversations in food studies for years to come.
Maple Sugaring
The art and science of maple syrup, and stories from the people who make it.
Simulated N deposition negatively impacts sugar maple regeneration in a northern hardwood ecosystem
1. During the next century, atmospheric nitrogen (N) deposition is projected to more than double, potentially leading to a decline in plant diversity as well as a change in plant community composition and structure. 2. In a decade-long field experiment, simulated atmospheric N deposition has slowed litter decay, resulting in an accumulation of forest floor (i.e. Oi & Oe horizons). We reasoned that a greater forest floor mass under simulated N deposition would impose a physical barrier to sugar maple Acer saccharum seedling establishment, thereby reducing seedling populations of an ecologically and economically important tree species. 3. To test this idea, we first quantified sugar maple seedling abundance in replicate northern hardwood forest stands receiving ambient atmospheric N (7–12 kg N ha−1 year−1) and experimental atmospheric N deposition, simulating future amounts in eastern North America (ambient plus 30 kg NO3− N ha−1 year−1). Then, we experimentally manipulated forest floor mass under ambient and simulated N deposition treatments. Finally, we transplanted first-year established seedlings into areas receiving ambient and simulated N deposition and quantified their mortality after 1 year. 4. First-year seedling abundance did not differ under ambient and simulated N deposition; however, there were greater abundances of second- and third-to-fifth-year seedlings under ambient N deposition (P < 0·001). In all cases, experimental manipulation to increase forest floor mass, equivalent to that under simulated N deposition, resulted in significantly (P = 0·001) fewer established individuals, regardless of whether the greater forest floor mass occurred under ambient or simulated N deposition. Finally, fewer 1-year-old transplanted seedlings survived when grown under simulated N, albeit that result was not statistically significant. 5. Synthesis and applications. The slowing of decay and the accumulation of forest floor under anthropogenic N deposition can negatively impact seedling survival and potentially alter stand development and structural diversity. As atmospheric N deposition increases globally, it becomes necessary to understand the mechanisms that lead to population changes for ecologically important tree species. The responses we document should be considered in simulations of future of forest’dynamics, as atmospheric N deposition continues to increase, specifically when sugar maple life-history traits are included to simulate regeneration, structural diversity and stand development.
Do Earthworms Have a Greater Influence on Nitrogen Dynamics Than Atmospheric Nitrogen Deposition?
Elevated levels of inorganic nitrogen (N) deposition and earthworm invasion have the potential to alter N dynamics in eastern North American temperate forests. A regional comparison was conducted across 21 sugar maple (Acer saccharum Marsh) stands in southern Ontario, where forest floor C:N ratios ranged from 17 to 38 showed that, similar to many other studies, rates of potential net mineralization and nitrification increased below a forest floor C:N ratio threshold of approximately 25 and that nitrification rates are positively correlated with foliar N concentration. However, detailed measurements at four representative stands, receiving between 9.8 and 19 kg N ha⁻¹ y⁻¹ in throughfall, showed that foliar N levels were highest at the site with the lowest N deposition. The primary difference amongst these sites was the presence of invasive earthworms. Specifically, sites without earthworms had significantly higher forest floor N with a lower C:N ratio than the sites with earthworms. There was no significant difference in the rate of sugar maple litter decomposition or chemistry amongst the sites assessed after 540 days using fine (2-mm mesh) litter bags, suggesting that differences in forest floor N levels were most likely due to consumption of litter by large earthworm species and that the lower C:N ratio of the forest floor in sites without earthworms is brought about primarily by a much longer residence time. This work supports the conclusions that forest floor N concentration (or C:N ratio) has a very strong control on N dynamics in forests, but shows that the presence of earthworms can have an impact on forest floor C:N ratio and hence N dynamics that is greater than current levels of atmospheric inorganic N deposition in temperate forests of Ontario.
Relationships between Fine Root Dynamics and Nitrogen Availability in Michigan Northern Hardwood Forests
Minirhizotrons were used to observe fine root (≤1 mm) production, mortality, and longevity over 2 years in four sugar-maple-dominated northern hardwood forests located along a latitudinal temperature gradient. The sites also differed in N availability, allowing us to assess the relative influences of soil temperature and N availability in controlling fine root lifespans. Root production and mortality occurred throughout the year, with most production occurring in the early portion of the growing season (by mid-July). Mortality was distributed much more evenly throughout the year. For surface fine roots (0-10 cm deep), significant differences in root longevity existed among the sites, with median root lifespans for root cohorts produced in 1994 ranging from 405 to 540 days. Estimates of fine root turnover, based on the average of annual root production and mortality as a proportion of standing crop, ranged from 0.50 to 0.68 year-1for roots in the upper 30 cm of soil. The patterns across sites in root longevity and turnover did not follow the north to south temperature gradient, but rather corresponded to site differences in N availability, with longer average root lifespans and lower root turnover occurring where N availability was greater. This suggests the possibility that roots are maintained as long as the benefit (nutrients) they provide outweighs the C cost of keeping them alive. Root N concentrations and respiration rates (at a given temperature) were also higher at sites where N availability was greater. It is proposed that greater metabolic activity for roots in nitrogen-rich zones leads to greater carbohydrate allocation to those roots, and that a reduction in root C sink strength when local nutrients are depleted provides a mechanism through which root lifespan is regulated in these forests.
Patterns of litter disappearance in a northern hardwood forest invaded by exotic earthworms
A field study was conducted to evaluate the effects of exotic earthworm invasions on the rates of leaf litter disappearance in a northern hardwood forest in south-central New York, USA. Specifically, we assessed whether differences in litter quality and the species composition of exotic earthworm communities affected leaf litter disappearance rates. Two forest sites with contrasting communities of exotic earthworms were selected, and disappearance rates of sugar maple and red oak litter were estimated in litter boxes in adjacent earthworm-free, transition, and earthworm-invaded plots within each site. After 540 days in the field, 1.7-3 times more litter remained in the reference plots than in the earthworm-invaded plots. In the earthworm-invaded plots, rates of disappearance of sugar maple litter were higher than for oak litter during the first year, but by the end of the experiment, the amount of sugar maple and oak litter remaining in the earthworm-invaded plots was identical within each site. The composition of the earthworm communities significantly affected the patterns of litter disappearance. In the site dominated by the anecic earthworm Lumbricus terrestris and the endogeic Aporrectodea tuberculata, the percentage of litter remaining after 540 days (~17%) was significantly less than at the site dominated by L. rubellus and Octolasion tyrtaeum (~27%). This difference may be attributed to the differences in feeding behavior of the two litter-feeding species: L. terrestris buries entire leaves in vertical burrows, whereas L. rubellus usually feeds on litter at the soil surface, leaving behind leaf petioles and veins. Our results showed that earthworms not only accelerate litter disappearance rates, but also may reduce the differences in decomposition rates that result from different litter qualities at later stages of decay. Similarly, our results indicate that earthworm effects on decomposition vary with earthworm community composition. Furthermore, because earthworm invasion can involve a predictable shift in community structure along invasion fronts or through time, the community dynamics of invasion are important in predicting the spatial and temporal effects of earthworm invasion on litter decomposition, especially at later stages of decay.