Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
178
result(s) for
"Marine animals Juvenile literature."
Sort by:
Clownfish aren't so funny : fascinating facts about some of the ocean's most misunderstood creatures
by
Weiss, Matt, author, photographer
,
Wilk, Keri, photographer
in
Marine animals Juvenile literature.
,
Marine animals Pictorial works Juvenile literature.
,
Marine animals.
2019
Dive in and enjoy these surprising stories about the ocean's smallest creatures! Clownflsh aren't funny, cuttlefish aren't cuddly, and mantis shrimp aren't so shrimpy (they're TOUGH dudes)! While sharks, whales, and dolphins get plenty of attention, the real drama of the ocean takes place in the nooks and crannies of coral reefs. And some of the coolest critters there are no bigger than a golf ball, stay hidden from plain sight, and are real killers. Featuring absolutely stunning close-up photography, Clownfish Aren't So Funny sends an important message about conservation and environmental responsibility even as it tells the compelling stories of the ocean's smaller, but still deadly, inhabitants.
The crown-of-thorns seastar species complex: knowledge on the biology and ecology of five corallivorous Acanthaster species
by
Wörheide, Gert
,
Pratchett, Morgan S.
,
Uthicke, Sven
in
Acanthaster
,
Acanthaster planci
,
adults
2024
Coral-eating crown-of-thorns seastars (CoTS,
Acanthaster
spp.) are major contributors to the coral reef crises across the Indo-Pacific region. Until recently, CoTS throughout the Indo-Pacific were regarded to be a single species,
Acanthaster planci
. However, genetic and morphological analyses demonstrated that there are at least four distinct species:
Acanthaster benziei
in the Red Sea,
Acanthaster mauritiensis
and
A. planci
in the Indian Ocean, and
Acanthaster
cf.
solaris
in the western Pacific.
Acanthaster
cf.
ellisii
in the eastern Pacific needs more taxonomic attention. Here, we review the biological knowledge for each species adapting a pragmatic geographical species definition and using a systematic literature review complemented with more focused searches for individual species. The vast majority of CoTS research (88%) was conducted on
A.
cf.
solaris
, with much of this research undertaken on the Great Barrier Reef or in Japan. Many studies of
A.
cf.
solaris
are focused on monitoring or documenting incidences of outbreaks, though there is a solid base of knowledge on larval, juvenile and adult ecology derived from field and laboratory experiments. By contrast, most of the published studies on the four remaining species simply document cases of population outbreaks. The major taxonomic bias in CoTS research constitutes a significant limitation for understanding and managing these species for two reasons. First, even for
A.
cf.
solaris
, which is the most studied species, limited fundamental knowledge of their biology and ecology constrains understanding of the drivers of outbreaks and hinders corresponding management actions for prevention and control of these events. Second, understanding and management of other species are predicated on the assumption that all CoTS species have similar biology and behaviour, an unsatisfying assumption for ecosystem management.
Journal Article
Marine minibeasts
by
Nagle, Kerry
in
Marine invertebrates Juvenile literature.
,
Marine animals Juvenile literature.
,
Marine invertebrates.
2010
Marine minibeasts are oceanic animals with no backbones. They might look like flowers, bugs, stars, or snails, but they are all perfectly suited for life in the sea.
Acoustic tag retention rate varies between juvenile green and hawksbill sea turtles
by
Crowder, Andrew G.
,
Hart, Kristen M.
,
Hillis-Starr, Zandy
in
Acoustics
,
Animal behavior
,
Animal Systematics/Taxonomy/Biogeography
2019
Background
Biotelemetry has become a key tool for studying marine animals in the last decade, and a wide range of electronic tags are now available for answering a range of research questions. However, comparatively, less attention has been given to attachment methods for these tags and the implications of tag retention on study design, especially when designing a comparative study looking at multiple species. Here, we reported our findings on acoustic tag retention rates for juveniles of two species of marine turtle: the green sea turtle (
Chelonia mydas
) and the hawksbill sea turtle (
Eretmochelys imbricata
). We captured both species twice annually (spring and fall) from 2012 through 2017, as part of a capture–mark–recapture study at Buck Island Reef National Monument, St. Croix, U.S. Virgin Islands. We assessed tag retention rates using physical recaptures of turtles previously outfitted with an acoustic tag.
Results
We deployed 72 acoustic tags on 60 juvenile greens and 37 acoustic tags on 29 hawksbills. We estimated the half-life for tags on greens to be 150 days (95% CI 117–188 days), whereas the half-life for tags on hawksbills was 1077 days (95% CI 870–2118 days), a marked difference. We observed that tag attachment holes, drilled into the posterior marginal scutes, migrated laterally towards the outer edge of the marginals in both species. Green turtles tended to exhibit tear-outs, as their attachment holes wore and/or tags grew near the edge of their scutes, whereas hawksbills tended to maintain the structure of these holes and did not exhibit these tear-outs.
Conclusions
We conclude that hawksbills can be tagged with long-battery-life acoustic tags for long-term studies of habitat use and movement patterns, whereas greens are likely to shed their tags in the 1st year, making long-term studies difficult. This study is the first clear evidence that tagging protocols should vary between species of hard-shelled turtles. Furthermore, shed tags on the seafloor continue to be detected by acoustic receivers, creating a challenge in data filtering before analysis. We encourage future research into an efficient method for filtering these data points prior to analysis.
Journal Article
The ocean biome
by
Grady, Colin, author
,
Grady, Colin. Zoom in on biomes
in
Marine ecology Juvenile literature.
,
Marine animals Juvenile literature.
,
Marine ecology.
2017
Introduction to the ocean biome.
Frozen in Time
by
Long, John A
,
Stilwell, Jeffrey D
in
Antarctica-Discovery and exploration
,
Climatic changes-Antarctica
,
Environmental geology-Antarctica
2012,2011
No other continent on Earth has undergone such radical environmental changes as Antarctica. In its transition from rich biodiversity to the barren, cold land of blizzards we see today, Antarctica provides a dramatic case study of how subtle changes in continental positioning can affect living communities, and how rapidly catastrophic changes can come about. Antarctica has gone from paradise to polar ice in just a few million years, a geological blink of an eye when we consider the real age of Earth. Frozen in Time presents a comprehensive overview of the fossil record of Antarctica framed within its changing environmental settings, providing a window into a past time and environment on the continent. It reconstructs Antarctica's evolving animal and plant communities as accurately as the fossil record permits. The story of how fossils were first discovered in Antarctica is a triumph of human endeavour. It continues today with modern expeditions going out to remote sites every year to fill in more of the missing parts of the continent's great jigsaw of life.
Could future ocean acidification be affecting the energy budgets of marine fish?
by
Porteus, Cosima S
,
Yoon, Gwangseok R
,
Bozai, Arsheen
in
Acclimatization
,
Acidification
,
Adults
2024
Abstract
With the unprecedented environmental changes caused by climate change including ocean acidification, it has become crucial to understand the responses and adaptive capacity of fish to better predict directional changes in the ecological landscape of the future. We conducted a systematic literature review to examine if simulated ocean acidification (sOA) could influence growth and reproduction in fish within the dynamic energy budget theory framework. As such, we chose to examine metabolic rate, locomotion, food assimilation and growth in early life stages (i.e. larvae and juvenile) and adults. Our goal was to evaluate if acclimatization to sOA has any directional changes in these traits and to explore potential implications for energetic trade-offs in these for growth and reproduction. We found that sOA had negligible effects on energetic expenditure for maintenance and aerobic metabolism due to the robust physiological capacity regulating acid–base and ion perturbations but substantive effects on locomotion, food assimilation and growth. We demonstrated evidence that sOA significantly reduced growth performance of fish in early life stages, which may have resulted from reduced food intake and digestion efficiency. Also, our results showed that sOA may enhance reproduction with increased numbers of offspring although this may come at the cost of altered reproductive behaviours or offspring fitness. While these results indicate evidence for changes in energy budgets because of physiological acclimatization to sOA, the heterogeneity of results in the literature suggests that physiological and neural mechanisms need to be clearly elucidated in future studies. Lastly, most studies on sOA have been conducted on early life stages, which necessitates that more studies should be conducted on adults to understand reproductive success and thus better predict cohort and population dynamics under ongoing climate change.
Lay Summary
Ocean acidification (OA) could alter energy budgets of marine fish. OA had negligible effects on aerobic metabolism, but substantive effects on locomotion, food assimilation and growth, suggesting a potential shift in energy budgets in the future. Also, OA may enhance reproduction potentially at the cost of altered reproductive behaviours or offspring fitness.
Journal Article
Sea bones
\"Did you know that Jellies (not Jelly Fish--because they aren't actually fish) have no bones and no brains? Or that the largest animal on Earth is the blue whale? Join author-illustrator Bob Barner as he makes waves with this lush picture book about the sea featuring his signature rhyming text and colorful illustrations. Filled with incredible fishy facts about vertebrates, invertebrates, endoskeletons, and exoskeletons, and an underwater informational chart, Sea Bones will make young readers want to dive right in!\"-- Provided by publisher.
A model to illustrate the potential pairing of animal biotelemetry with individual-based modeling
2020
Background
Animal biotelemetry and individual-based modeling (IBM) are natural complements, but there are few published examples where they are applied together to address fundamental or applied ecological questions. Existing studies are often found in the modeling literature and frequently re-use small datasets collected for purposes other than the model application. Animal biotelemetry can provide the robust measurements that capture relevant ecological patterns needed to parameterize, calibrate, and assess hypotheses in IBMs; together they could help meet demand for predictive modeling and decision-support in the face of environmental change.
Results
We used an simple exemplar IBM that uses spatio-temporal movement patterns of 103 acoustic-tagged juvenile yearling Chinook salmon (
Oncorhynchus tshawytscha
), termed ‘smolts’, to quantitatively assess plausibility of two migratory strategies that smolts are hypothesized to use while migrating north through the plume of the Columbia River (United States of America). We find that model smolts that seek to maximize growth demonstrate movement patterns consistent with those of tagged smolts. Model smolts that seek to move quickly out of the plume region by seeking favorable currents do not reproduce the same patterns.
Conclusions
Animal biotelemetry and individual-based modeling are maturing fields of inquiry. Our hope is that this model description and the basic analytical techniques will effectively illustrate individual-based models for the biotelemetry community, and perhaps inspire new collaborations between biotelemetry researchers and individual-based modelers.
Journal Article