Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
11,223
result(s) for
"Masonry construction"
Sort by:
Comparative assessment of finite element macro-modelling approaches for seismic analysis of non-engineered masonry constructions
by
Parisi Fulvio
,
Ravichandran Nagavinothini
,
Losanno Daniele
in
Buildings
,
Casualties
,
Computer applications
2021
All around the world, non-engineered masonry constructions (NECs) typically have high vulnerability to seismic ground motion, resulting in heavy damage and severe casualties after earthquakes. Even though a number of computational strategies have been developed for seismic analysis of unreinforced masonry structures, a few studies have focussed on NECs located in developing countries. In this paper, different modelling options for finite element analysis of non-engineered masonry buildings are investigated. The goal of the study was to identify the modelling option with the best trade-off between computational burden and accuracy of results, in view of seismic risk assessment of NECs at regional scale. Based on the experimental behaviour of a single-storey structure representative of Indian non-engineered masonry buildings, the output of seismic response analysis of refined 3D models in ANSYS was compared to that of a simplified model based on 2D, nonlinear, layered shell elements in SAP2000. The numerical-experimental comparison was carried out under incremental static lateral loading, whereas nonlinear time history analysis was performed to investigate the dynamic performance of the case-study structure. Analysis results show that the simplified model can be a computationally efficient modelling option for both nonlinear static and dynamic analyses, particularly in case of force-based approaches for design and assessment of base isolation systems aimed at the large-scale seismic vulnerability mitigation of NECs.
Journal Article
Shake-table testing of a stone masonry building aggregate: overview of blind prediction study
2024
City centres of Europe are often composed of unreinforced masonry structural aggregates, whose seismic response is challenging to predict. To advance the state of the art on the seismic response of these aggregates, the Adjacent Interacting Masonry Structures (AIMS) subproject from Horizon 2020 project Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe (SERA) provides shake-table test data of a two-unit, double-leaf stone masonry aggregate subjected to two horizontal components of dynamic excitation. A blind prediction was organized with participants from academia and industry to test modelling approaches and assumptions and to learn about the extent of uncertainty in modelling for such masonry aggregates. The participants were provided with the full set of material and geometrical data, construction details and original seismic input and asked to predict prior to the test the expected seismic response in terms of damage mechanisms, base-shear forces, and roof displacements. The modelling approaches used differ significantly in the level of detail and the modelling assumptions. This paper provides an overview of the adopted modelling approaches and their subsequent predictions. It further discusses the range of assumptions made when modelling masonry walls, floors and connections, and aims at discovering how the common solutions regarding modelling masonry in general, and masonry aggregates in particular, affect the results. The results are evaluated both in terms of damage mechanisms, base shear forces, displacements and interface openings in both directions, and then compared with the experimental results. The modelling approaches featuring Discrete Element Method (DEM) led to the best predictions in terms of displacements, while a submission using rigid block limit analysis led to the best prediction in terms of damage mechanisms. Large coefficients of variation of predicted displacements and general underestimation of displacements in comparison with experimental results, except for DEM models, highlight the need for further consensus building on suitable modelling assumptions for such masonry aggregates.
Journal Article
Experimental Evaluation of Compressive Properties of Early-Age Mortar and Concrete Hollow-Block Masonry Prisms within Construction Stages
by
Sadhu, Ayan
,
Banting, Bennett
,
Abasi, Ali
in
Analysis
,
Building codes
,
Compressive properties
2024
Early-age masonry structures require temporary support until they achieve full strength. Nevertheless, there is a limited understanding of the properties of freshly laid masonry and the design of newly constructed, unsupported masonry walls. This situation has led to numerous instances of structural damage and injuries to workers, prompting conservative construction bracing techniques. This paper presents comprehensive experimental studies on early-age mortar cubes and masonry prisms to assess the effects of curing time on the compressive properties of masonry assemblies, which is necessary for the design of temporary bracing. The change in modulus of elasticity and compressive strength of masonry prisms and mortar with curing time has been experimentally assessed. The results indicate that the compressive strength of freshly cast mortar cubes is relatively insignificant until approximately 24 h after construction, when it was observed to increase logarithmically. Regarding the performance perspective, the compressive strength of early-age masonry prisms is inconsiderable, less than 15% of full strength during the first day after construction. By contrast, regarding the life safety perspective, the compressive properties of a mortar joint within a masonry assembly (which is of more practical interest) appear to have no effect on the failure strength of concrete masonry prisms over the range of ages tested. The failure modes of the early-age mortar cubes and early-age masonry prism samples depend on the curing time, and different failure modes occurred before and after the start of the primary hydration phase, which is 20.8 h after construction. It is anticipated that the proposed research will provide valuable material properties leading to efficient design of control devices (e.g., temporary bracing) and improved guidelines for concrete-block masonry construction.
Journal Article
Performance of Sustainable Insulated Wall Panels with Geopolymer Concrete
by
Gunasekaran, Jayakumar
,
Roy, Krishanu
,
Arulraj, Prince
in
Bearing strength
,
By products
,
Carbon dioxide
2022
The increase in the population creates an increased demand for construction activities with eco-friendly, sustainable, and high-performance materials. Insulated concrete form (ICF) is an emerging technology that satisfies the sustainability demands of the construction sector. ICF is a composite material (a combination of expanded polystyrene (EPS) and geopolymer concrete (GPC)) that enhances the performance of concrete (such as thermal insulation and mechanical properties). To investigate the axial strength performance, five different types of prototypes were created and tested. Type I (without reinforcement): (a) hollow EPS without concrete, (b) alternative cells of EPS filled with concrete, (c) and all the cells of EPS filled with concrete; and Type II (with reinforcement): (d) alternative cells of EPS filled with concrete; (e) and all the cells of EPS filled with concrete. Amongst all the five prototypes, two grades of GPC were employed. M15 and M20 grades are used to examine the effectiveness in terms of cost. For comparing the test results, a reference masonry unit was constructed with conventional clay bricks. The main aim of the investigation is to examine the physical and mechanical performance of sandwich-type ICFs. The presence of polystyrene in ICF changes the failure pattern from brittle to ductile. The result from the study reveals that the Type II prototype, i.e., the specimen with all the cells of EPS filled with concrete and reinforcement, possesses a maximum load-carrying capacity greater than the reference masonry unit. Therefore, the proposed ICF is recommended to replace the conventional load-bearing system and non-load-bearing walls.
Journal Article
Eco-Friendly Building Material Innovation: Geopolymer Bricks from Repurposed Plastic Waste
by
Srinivas, T.
,
Gulati, Monica
,
Bindu, K. Hima
in
Bricks
,
Building materials
,
Built environment
2023
This study compares the ecological footprints of geopolymer and red clay brick prisms, two common building materials for long-lasting masonry structures. The study’s goal is to shed light on the environmental performance of different brick kinds by a thorough review of sustainability indices such as embodied energy, CO2 emissions, water use, and trash creation. The results suggest that geopolymer bricks have better environmental features than red clay bricks, such as lower embodied energy, decreased CO2 emissions, lower water consumption, and less waste creation. These findings underline the promise of geopolymer bricks as an eco-friendlier masonry alternative that may improve green building performance. The report, however, stresses the need to think about more than only environmental damage. The sustainability and feasibility of utilising geopolymer and red clay bricks depend heavily on factors including durability, thermal performance, and cost-effectiveness. In order to make educated selections about brick selection, it is important to evaluate these variables. The results of this study provide the groundwork for more research on sustainable masonry materials and contribute to the development of environmentally aware building practises. Architectural and engineering professionals may encourage environmentally responsible building practises and help create a more sustainable and resilient built environment by taking this study’s findings into account.
Journal Article
Crystallization Cycles in Masonry Walls: Experimental Technique to Develop Accelerated Aging on a Real Scale
by
Vizcaíno Hernández, Isaías Edén
,
Acosta Collazo, Alejandro
,
Cervantes López, Ernesto
in
Crystallization
,
Dehydration
,
Efflorescence
2024
Moisture in historic built heritage is one of the main degenerative agents, because it supports or manifests itself through multiple pathologies. Current knowledge allows for the diagnosis and assessment of the problem, but there are deficiencies in the evaluation of corrective systems due to the time it takes for moisture to become significant. In response, this study proposes an experimental methodology that aims to reproduce the accelerated aging of real scale specimens under laboratory conditions. Thereby improving the understanding of the impact of moisture related deterioration on masonry structures. To achive this, eight masonry walls were constructed and subjected to eight cycles of sulfate crystallization. They were saturated with different sulfate concentrations (5% or 10%) and exposed to different drying conditions (outdoor or solar dehydrator) in order to identify the factors favoring sulfate crystallization and the resulting deterioration. The progress of the experiments was monitored using a hygrometer, a thermographic camera and photogrammetry. The results indicate that it is possible to induce efflorescence in real scale specimens. Temperature and moisture monitoring helped identify the solar dehydrator as a more effective drying treatment. While digital photogrammetry was considered inefficient for quantifying volumetric damage, since this technique can present errors greater than 2%, a value exceeding the observed wear. Reason why the weight of material detached at the end of the experiment was recorded and a positive correlation between the increase in sulfate concentration and the use of the dehydrator was observed. Finally, pertinent considerations are made to improve the experimental conditions.
Journal Article
Second Life for Recycled Concrete and Other Construction and Demolition Waste in Mortars for Masonry: Full Scope of Material Properties, Performance, and Environmental Aspects
2024
This review presents the scope of current efforts to utilize recycled construction and demolition waste in mortars for masonry. More than 100 articles are divided into groups pertaining to the type of mortar, different binder systems, the type of construction and demolition waste (CDW), and its utilization specifics. Cement-based mortars dominate this research domain, whereas recycled concrete is the main material employed to replace virgin aggregates, followed by recycled masonry and recycled mixed waste aggregates. Such application in cement-based mortars could increase water demand by 20–34% and reduce strength by 11–50%, with recycled concrete aggregates being the most favorable. Natural aggregate substitution is disadvantageous in strong mortars, whereas weaker ones, such as lime-based mortars, could benefit from this incorporation. The extent of this topic also suggests possibilities for different recycled material use cases in mortars for masonry, although the available literature is largely insufficient to infer meaningful trends. Nonetheless, the most relevant knowledge synthesized in this review offers promising and environment-conscious utilization pathways for recycled concrete and other construction and demolition waste, which brings opportunities for further research on their use in mortars for masonry and industrial-scale applications.
Journal Article
Shake table testing of a half-scale stone masonry building aggregate
2024
Masonry aggregates have developed throughout city centres of Europe due to a centuries-long densification process that generally lacked consistent planning or engineering. Adjacent units are connected either through interlocking stones or a layer of mortar. Without interlocking stones, the connection between the units is weak, and an out of-phase response of the units can lead to separation and pounding. Modelling guidelines and code instructions are missing for modelling the interaction of such adjacent units because of scarce experimental data. Therefore, in this study an unreinforced stone masonry aggregate was tested on the bidirectional shake table with an incremental seismic protocol as a part of the SERA AIMS—Adjacent Interacting Masonry Structures project. The aggregate was constructed at half-scale with double-leaf undressed stone masonry without interlocking between the units. Floors were built with timber beams and one layer of planks, with different beam span orientation for each unit. After significant damage, one of the units was retrofitted by anchoring the timber beams to the walls to prevent out-of-plane failure and testing was continued. Significant interaction between the units was observed with specific damage mechanisms. Cracking and separation were observed at the interface in both longitudinal and transverse direction, starting at lower intensity runs and progressively increasing. Bidirectional seismic excitation affected the unit separation, with friction forces seemingly playing a role in the transverse direction. Signs of pounding at the interface were observed during higher intensity runs, together with the formation of a soft storey mechanism at the upper storey of the higher unit. The mechanism involved an out-of-plane response of the shared wall, with a horizontal crack at the height of the interaction. These findings contribute to a better understanding of the seismic behaviour of masonry aggregates.
Journal Article
Damage assessment and the effectiveness of prevention: the response of ordinary unreinforced masonry buildings in Norcia during the Central Italy 2016–2017 seismic sequence
2019
Four regions of central Italy were struck by the seismic sequence of the 2016 earthquake in the country: Lazio, Abruzzo, Umbria and Marche. This highlighted the different behaviour of masonry constructions depending on the prevention actions carried out after previous earthquakes. In particular, although damaged, the masonry buildings in the historical centre of Norcia (Umbria region) behaved significantly better than those in other regions. Indeed, the strengthening interventions carried out after the earthquakes of 1971, 1979 and 1997 greatly affected the seismic behaviour of masonry aggregates (contiguous masonry structural units, MSUs) in the historical centre, which sustained limited damage and a low number of collapses. This paper discusses the empirical data on damage collected with respect to 670 MSUs by means of the first level survey form concerning post-earthquake damage, and usability assessments (AeDES). The forms completed for the survey relate to MSUs in the historical centre of Norcia and were produced by the technicians of the Umbria Seismic Risk Office. The analysis shows the correlation between the MSU characteristics of: age of construction and renovation work; type of vertical and horizontal structures; roof types and usability rating; and the damage level and extent thereof detected in vertical structures. The effectiveness of previous strengthening interventions and the analyses of the types of strengthening solution are also discussed. A case study aggregate is analyzed in detail in order to illustrate the importance of strengthening interventions on vertical bearing elements. The strengthening interventions resulted in a sound strategy to strongly reduce losses, even in a very vulnerable centre comprised of old residential masonry aggregates.
Journal Article