Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
64,549
result(s) for
"Mathematical Applications in Computer Science"
Sort by:
A survey on missing data in machine learning
2021
Machine learning has been the corner stone in analysing and extracting information from data and often a problem of missing values is encountered. Missing values occur because of various factors like missing completely at random, missing at random or missing not at random. All these may result from system malfunction during data collection or human error during data pre-processing. Nevertheless, it is important to deal with missing values before analysing data since ignoring or omitting missing values may result in biased or misinformed analysis. In literature there have been several proposals for handling missing values. In this paper, we aggregate some of the literature on missing data particularly focusing on machine learning techniques. We also give insight on how the machine learning approaches work by highlighting the key features of missing values imputation techniques, how they perform, their limitations and the kind of data they are most suitable for. We propose and evaluate two methods, the k nearest neighbor and an iterative imputation method (missForest) based on the random forest algorithm. Evaluation is performed on the Iris and novel power plant fan data with induced missing values at missingness rate of 5% to 20%. We show that both missForest and the k nearest neighbor can successfully handle missing values and offer some possible future research direction.
Journal Article
A systematic review and research perspective on recommender systems
2022
Recommender systems are efficient tools for filtering online information, which is widespread owing to the changing habits of computer users, personalization trends, and emerging access to the internet. Even though the recent recommender systems are eminent in giving precise recommendations, they suffer from various limitations and challenges like scalability, cold-start, sparsity, etc. Due to the existence of various techniques, the selection of techniques becomes a complex work while building application-focused recommender systems. In addition, each technique comes with its own set of features, advantages and disadvantages which raises even more questions, which should be addressed. This paper aims to undergo a systematic review on various recent contributions in the domain of recommender systems, focusing on diverse applications like books, movies, products, etc. Initially, the various applications of each recommender system are analysed. Then, the algorithmic analysis on various recommender systems is performed and a taxonomy is framed that accounts for various components required for developing an effective recommender system. In addition, the datasets gathered, simulation platform, and performance metrics focused on each contribution are evaluated and noted. Finally, this review provides a much-needed overview of the current state of research in this field and points out the existing gaps and challenges to help posterity in developing an efficient recommender system.
Journal Article
Transfer learning: a friendly introduction
2022
Infinite numbers of real-world applications use Machine Learning (ML) techniques to develop potentially the best data available for the users. Transfer learning (TL), one of the categories under ML, has received much attention from the research communities in the past few years. Traditional ML algorithms perform under the assumption that a model uses limited data distribution to train and test samples. These conventional methods predict target tasks undemanding and are applied to small data distribution. However, this issue conceivably is resolved using TL. TL is acknowledged for its connectivity among the additional testing and training samples resulting in faster output with efficient results. This paper contributes to the domain and scope of TL, citing situational use based on their periods and a few of its applications. The paper provides an in-depth focus on the techniques; Inductive TL, Transductive TL, Unsupervised TL, which consists of sample selection, and domain adaptation, followed by contributions and future directions.
Journal Article
Feature selection strategies: a comparative analysis of SHAP-value and importance-based methods
by
Liang, Qianxin
,
Khoshgoftaar, Taghi M
,
Hancock, John T
in
Big Data
,
Classification
,
Classifiers
2024
In the context of high-dimensional credit card fraud data, researchers and practitioners commonly utilize feature selection techniques to enhance the performance of fraud detection models. This study presents a comparison in model performance using the most important features selected by SHAP (SHapley Additive exPlanations) values and the model’s built-in feature importance list. Both methods rank features and choose the most significant ones for model assessment. To evaluate the effectiveness of these feature selection techniques, classification models are built using five classifiers: XGBoost, Decision Tree, CatBoost, Extremely Randomized Trees, and Random Forest. The Area under the Precision-Recall Curve (AUPRC) serves as the evaluation metric. All experiments are executed on the Kaggle Credit Card Fraud Detection Dataset. The experimental outcomes and statistical tests indicate that feature selection methods based on importance values outperform those based on SHAP values across classifiers and various feature subset sizes. For models trained on larger datasets, it is recommended to use the model’s built-in feature importance list as the primary feature selection method over SHAP. This suggestion is based on the rationale that computing SHAP feature importance is a distinct activity, while models naturally provide built-in feature importance as part of the training process, requiring no additional effort. Consequently, opting for the model’s built-in feature importance list can offer a more efficient and practical approach for larger datasets and more intricate models.
Journal Article
IGRF-RFE: a hybrid feature selection method for MLP-based network intrusion detection on UNSW-NB15 dataset
2023
The effectiveness of machine learning models can be significantly averse to redundant and irrelevant features present in the large dataset which can cause drastic performance degradation. This paper proposes IGRF-RFE: a hybrid feature selection method tasked for multi-class network anomalies using a multilayer perceptron (MLP) network. IGRF-RFE exploits the qualities of both a filter method for its speed and a wrapper method for its relevance search. In the first phase of our approach, we use a combination of two filter methods, information gain (IG) and random forest (RF) respectively, to reduce the feature subset search space. By combining these two filter methods, the influence of less important features but with the high-frequency values selected by IG is more effectively managed by RF resulting in more relevant features to be included in the feature subset search space. In the second phase of our approach, we use a machine learning-based wrapper method that provides a recursive feature elimination (RFE) to further reduce feature dimensions while taking into account the relevance of similar features. Our experimental results obtained based on the UNSW-NB15 dataset confirmed that our proposed method can improve the accuracy of anomaly detection as it can select more relevant features while reducing the feature space. The results show that the feature is reduced from 42 to 23 while the multi-classification accuracy of MLP is improved from 82.25% to 84.24%.
Journal Article
A survey on Image Data Augmentation for Deep Learning
by
Shorten, Connor
,
Khoshgoftaar, Taghi M.
in
Algorithms
,
Artificial neural networks
,
Augmentation
2019
Deep convolutional neural networks have performed remarkably well on many Computer Vision tasks. However, these networks are heavily reliant on big data to avoid overfitting. Overfitting refers to the phenomenon when a network learns a function with very high variance such as to perfectly model the training data. Unfortunately, many application domains do not have access to big data, such as medical image analysis. This survey focuses on Data Augmentation, a data-space solution to the problem of limited data. Data Augmentation encompasses a suite of techniques that enhance the size and quality of training datasets such that better Deep Learning models can be built using them. The image augmentation algorithms discussed in this survey include geometric transformations, color space augmentations, kernel filters, mixing images, random erasing, feature space augmentation, adversarial training, generative adversarial networks, neural style transfer, and meta-learning. The application of augmentation methods based on GANs are heavily covered in this survey. In addition to augmentation techniques, this paper will briefly discuss other characteristics of Data Augmentation such as test-time augmentation, resolution impact, final dataset size, and curriculum learning. This survey will present existing methods for Data Augmentation, promising developments, and meta-level decisions for implementing Data Augmentation. Readers will understand how Data Augmentation can improve the performance of their models and expand limited datasets to take advantage of the capabilities of big data.
Journal Article
Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
by
Fadhel, Mohammed A.
,
Zhang, Jinglan
,
Santamaría, J.
in
Application
,
Artificial neural networks
,
Big Data
2021
In the last few years, the deep learning (DL) computing paradigm has been deemed the Gold Standard in the machine learning (ML) community. Moreover, it has gradually become the most widely used computational approach in the field of ML, thus achieving outstanding results on several complex cognitive tasks, matching or even beating those provided by human performance. One of the benefits of DL is the ability to learn massive amounts of data. The DL field has grown fast in the last few years and it has been extensively used to successfully address a wide range of traditional applications. More importantly, DL has outperformed well-known ML techniques in many domains, e.g., cybersecurity, natural language processing, bioinformatics, robotics and control, and medical information processing, among many others. Despite it has been contributed several works reviewing the State-of-the-Art on DL, all of them only tackled one aspect of the DL, which leads to an overall lack of knowledge about it. Therefore, in this contribution, we propose using a more holistic approach in order to provide a more suitable starting point from which to develop a full understanding of DL. Specifically, this review attempts to provide a more comprehensive survey of the most important aspects of DL and including those enhancements recently added to the field. In particular, this paper outlines the importance of DL, presents the types of DL techniques and networks. It then presents convolutional neural networks (CNNs) which the most utilized DL network type and describes the development of CNNs architectures together with their main features, e.g., starting with the AlexNet network and closing with the High-Resolution network (HR.Net). Finally, we further present the challenges and suggested solutions to help researchers understand the existing research gaps. It is followed by a list of the major DL applications. Computational tools including FPGA, GPU, and CPU are summarized along with a description of their influence on DL. The paper ends with the evolution matrix, benchmark datasets, and summary and conclusion.
Journal Article
CatBoost for big data: an interdisciplinary review
2020
Gradient Boosted Decision Trees (GBDT’s) are a powerful tool for classification and regression tasks in Big Data. Researchers should be familiar with the strengths and weaknesses of current implementations of GBDT’s in order to use them effectively and make successful contributions. CatBoost is a member of the family of GBDT machine learning ensemble techniques. Since its debut in late 2018, researchers have successfully used CatBoost for machine learning studies involving Big Data. We take this opportunity to review recent research on CatBoost as it relates to Big Data, and learn best practices from studies that cast CatBoost in a positive light, as well as studies where CatBoost does not outshine other techniques, since we can learn lessons from both types of scenarios. Furthermore, as a Decision Tree based algorithm, CatBoost is well-suited to machine learning tasks involving categorical, heterogeneous data. Recent work across multiple disciplines illustrates CatBoost’s effectiveness and shortcomings in classification and regression tasks. Another important issue we expose in literature on CatBoost is its sensitivity to hyper-parameters and the importance of hyper-parameter tuning. One contribution we make is to take an interdisciplinary approach to cover studies related to CatBoost in a single work. This provides researchers an in-depth understanding to help clarify proper application of CatBoost in solving problems. To the best of our knowledge, this is the first survey that studies all works related to CatBoost in a single publication.
Journal Article
The use of Big Data Analytics in healthcare
2022
The introduction of Big Data Analytics (BDA) in healthcare will allow to use new technologies both in treatment of patients and health management. The paper aims at analyzing the possibilities of using Big Data Analytics in healthcare. The research is based on a critical analysis of the literature, as well as the presentation of selected results of direct research on the use of Big Data Analytics in medical facilities. The direct research was carried out based on research questionnaire and conducted on a sample of 217 medical facilities in Poland. Literature studies have shown that the use of Big Data Analytics can bring many benefits to medical facilities, while direct research has shown that medical facilities in Poland are moving towards data-based healthcare because they use structured and unstructured data, reach for analytics in the administrative, business and clinical area. The research positively confirmed that medical facilities are working on both structural data and unstructured data. The following kinds and sources of data can be distinguished: from databases, transaction data, unstructured content of emails and documents, data from devices and sensors. However, the use of data from social media is lower as in their activity they reach for analytics, not only in the administrative and business but also in the clinical area. It clearly shows that the decisions made in medical facilities are highly data-driven. The results of the study confirm what has been analyzed in the literature that medical facilities are moving towards data-based healthcare, together with its benefits.
Journal Article
A review of graph neural networks: concepts, architectures, techniques, challenges, datasets, applications, and future directions
2024
Deep learning has seen significant growth recently and is now applied to a wide range of conventional use cases, including graphs. Graph data provides relational information between elements and is a standard data format for various machine learning and deep learning tasks. Models that can learn from such inputs are essential for working with graph data effectively. This paper identifies nodes and edges within specific applications, such as text, entities, and relations, to create graph structures. Different applications may require various graph neural network (GNN) models. GNNs facilitate the exchange of information between nodes in a graph, enabling them to understand dependencies within the nodes and edges. The paper delves into specific GNN models like graph convolution networks (GCNs), GraphSAGE, and graph attention networks (GATs), which are widely used in various applications today. It also discusses the message-passing mechanism employed by GNN models and examines the strengths and limitations of these models in different domains. Furthermore, the paper explores the diverse applications of GNNs, the datasets commonly used with them, and the Python libraries that support GNN models. It offers an extensive overview of the landscape of GNN research and its practical implementations.
Journal Article