Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
789,596 result(s) for "Mathematical analysis"
Sort by:
Ergodicity of Markov Processes via Nonstandard Analysis
The Markov chain ergodic theorem is well-understood if either the time-line or the state space is discrete. However, there does not exist a very clear result for general state space continuous-time Markov processes. Using methods from mathematical logic and nonstandard analysis, we introduce a class of hyperfinite Markov processes-namely, general Markov processes which behave like finite state space discrete-time Markov processes. We show that, under moderate conditions, the transition probability of hyperfinite Markov processes align with the transition probability of standard Markov processes. The Markov chain ergodic theorem for hyperfinite Markov processes will then imply the Markov chain ergodic theorem for general state space continuous-time Markov processes.
The regularity of general parabolic systems with degenerate diffusion
The aim of the paper is twofold. On one hand the authors want to present a new technique called $p$-caloric approximation, which is a proper generalization of the classical compactness methods first developed by DeGiorgi with his Harmonic Approximation Lemma. This last result, initially introduced in the setting of Geometric Measure Theory to prove the regularity of minimal surfaces, is nowadays a classical tool to prove linearization and regularity results for vectorial problems. Here the authors develop a very far reaching version of this general principle devised to linearize general degenerate parabolic systems. The use of this result in turn allows the authors to achieve the subsequent and main aim of the paper, that is, the implementation of a partial regularity theory for parabolic systems with degenerate diffusion of the type $\\partial_t u - \\mathrm{div} a(Du)=0$, without necessarily assuming a quasi-diagonal structure, i.e. a structure prescribing that the gradient non-linearities depend only on the the explicit scalar quantity.
Extremes and recurrence in dynamical systems
Written by a team of international experts, Extremes and Recurrence in Dynamical Systems presents a unique point of view on the mathematical theory of extremes and on its applications in the natural and social sciences. Featuring an interdisciplinary approach to new concepts in pure and applied mathematical research, the book skillfully combines the areas of statistical mechanics, probability theory, measure theory, dynamical systems, statistical inference, geophysics, and software application. Emphasizing the statistical mechanical point of view, the book introduces robust theoretical embedding for the application of extreme value theory in dynamical systems. Extremes and Recurrence in Dynamical Systems also features: • A careful examination of how a dynamical system can serve as a generator of stochastic processes • Discussions on the applications of statistical inference in the theoretical and heuristic use of extremes • Several examples of analysis of extremes in a physical and geophysical context • A final summary of the main results presented along with a guide to future research projects • An appendix with software in Matlab ® programming language to help readers to develop further understanding of the presented concepts Extremes and Recurrence in Dynamical Systems is ideal for academics and practitioners in pure and applied mathematics, probability theory, statistics, chaos, theoretical and applied dynamical systems, statistical mechanics, geophysical fluid dynamics, geosciences and complexity science. VALERIO LUCARINI, PhD, is Professor of Theoretical Meteorology at the University of Hamburg, Germany and Professor of Statistical Mechanics at the University of Reading, UK. DAVIDE FARANDA, PhD, is Researcher at the Laboratoire des science du climat et de l'environnement, IPSL, CEA Saclay, Université Paris-Saclay, Gif-sur-Yvette, France. ANA CRISTINA GOMES MONTEIRO MOREIRA DE FREITAS, PhD, is Assistant Professor in the Faculty of Economics at the University of Porto, Portugal. JORGE MIGUEL MILHAZES DE FREITAS, PhD, is Assistant Professor in the Department of Mathematics of the Faculty of Sciences at the University of Porto, Portugal. MARK HOLLAND, PhD, is Senior Lecturer in Applied Mathematics in the College of Engineering, Mathematics and Physical Sciences at the University of Exeter, UK. TOBIAS KUNA, PhD, is Associate Professor in the Department of Mathematics and Statistics at the University of Reading, UK. MATTHEW NICOL, PhD, is Professor of Mathematics at the University of Houston, USA. MIKE TODD, PhD, is Lecturer in the School of Mathematics and Statistics at the University of St. Andrews, Scotland. SANDRO VAIENTI, PhD, is Professor of Mathematics at the University of Toulon and Researcher at the Centre de Physique Théorique, France.
Mathematical analysis : a very short introduction
Richard Earl describes the nascent evolution of mathematical analysis, its development as a subject in its own right, and its wide-ranging applications in mathematics and science, modelling reality from acoustics to fluid dynamics, from biological systems to quantum theory.
Applied Time Series Econometrics
Time series econometrics is a rapidly evolving field. Particularly, the cointegration revolution has had a substantial impact on applied analysis. Hence, no textbook has managed to cover the full range of methods in current use and explain how to proceed in applied domains. This gap in the literature motivates the present volume. The methods are sketched out, reminding the reader of the ideas underlying them and giving sufficient background for empirical work. The treatment can also be used as a textbook for a course on applied time series econometrics. Topics include: unit root and cointegration analysis, structural vector autoregressions, conditional heteroskedasticity and nonlinear and nonparametric time series models. Crucial to empirical work is the software that is available for analysis. New methodology is typically only gradually incorporated into existing software packages. Therefore a flexible Java interface has been created, allowing readers to replicate the applications and conduct their own analyses.