Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
71,914 result(s) for "Mathematical and Computational Biology"
Sort by:
Kinetic models for epidemic dynamics with social heterogeneity
We introduce a mathematical description of the impact of the number of daily contacts in the spread of infectious diseases by integrating an epidemiological dynamics with a kinetic modeling of population-based contacts. The kinetic description leads to study the evolution over time of Boltzmann-type equations describing the number densities of social contacts of susceptible, infected and recovered individuals, whose proportions are driven by a classical SIR-type compartmental model in epidemiology. Explicit calculations show that the spread of the disease is closely related to moments of the contact distribution. Furthermore, the kinetic model allows to clarify how a selective control can be assumed to achieve a minimal lockdown strategy by only reducing individuals undergoing a very large number of daily contacts. We conduct numerical simulations which confirm the ability of the model to describe different phenomena characteristic of the rapid spread of an epidemic. Motivated by the COVID-19 pandemic, a last part is dedicated to fit numerical solutions of the proposed model with infection data coming from different European countries.
Modelling the fear effect in predator–prey interactions
A recent field manipulation on a terrestrial vertebrate showed that the fear of predators alone altered anti-predator defences to such an extent that it greatly reduced the reproduction of prey. Because fear can evidently affect the populations of terrestrial vertebrates, we proposed a predator–prey model incorporating the cost of fear into prey reproduction. Our mathematical analyses show that high levels of fear (or equivalently strong anti-predator responses) can stabilize the predator–prey system by excluding the existence of periodic solutions. However, relatively low levels of fear can induce multiple limit cycles via subcritical Hopf bifurcations, leading to a bi-stability phenomenon. Compared to classic predator–prey models which ignore the cost of fear where Hopf bifurcations are typically supercritical , Hopf bifurcations in our model can be both supercritical and subcritical by choosing different sets of parameters. We conducted numerical simulations to explore the relationships between fear effects and other biologically related parameters (e.g. birth/death rate of adult prey), which further demonstrate the impact that fear can have in predator–prey interactions. For example, we found that under the conditions of a Hopf bifurcation, an increase in the level of fear may alter the direction of Hopf bifurcation from supercritical to subcritical when the birth rate of prey increases accordingly. Our simulations also show that the prey is less sensitive in perceiving predation risk with increasing birth rate of prey or increasing death rate of predators, but demonstrate that animals will mount stronger anti-predator defences as the attack rate of predators increases.
Open problems in PDE models for knowledge-based animal movement via nonlocal perception and cognitive mapping
The inclusion of cognitive processes, such as perception, learning and memory, are inevitable in mechanistic animal movement modelling. Cognition is the unique feature that distinguishes animal movement from mere particle movement in chemistry or physics. Hence, it is essential to incorporate such knowledge-based processes into animal movement models. Here, we summarize popular deterministic mathematical models derived from first principles that begin to incorporate such influences on movement behaviour mechanisms. Most generally, these models take the form of nonlocal reaction-diffusion-advection equations, where the nonlocality may appear in the spatial domain, the temporal domain, or both. Mathematical rules of thumb are provided to judge the model rationality, to aid in model development or interpretation, and to streamline an understanding of the range of difficulty in possible model conceptions. To emphasize the importance of biological conclusions drawn from these models, we briefly present available mathematical techniques and introduce some existing “measures of success” to compare and contrast the possible predictions and outcomes. Throughout the review, we propose a large number of open problems relevant to this relatively new area, ranging from precise technical mathematical challenges, to more broad conceptual challenges at the cross-section between mathematics and ecology. This review paper is expected to act as a synthesis of existing efforts while also pushing the boundaries of current modelling perspectives to better understand the influence of cognitive movement mechanisms on movement behaviours and space use outcomes.
Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent
The focus of this article is a Bayesian method for inferring both species delimitations and species trees under the multispecies coalescent model using molecular sequences from multiple loci. The species delimitation requires no a priori assignment of individuals to species, and no guide tree. The method is implemented in a package called STACEY for BEAST2, and is a extension of the author’s DISSECT package. Here we demonstrate considerable efficiency improvements by using three new operators for sampling from the posterior using the Markov chain Monte Carlo algorithm, and by using a model for the population size parameters along the branches of the species tree which allows these parameters to be integrated out. The correctness of the moves is demonstrated by tests of the implementation. The practice of using a pipeline approach to species delimitation under the multispecies coalescent, has been shown to have major problems on simulated data (Olave et al. in Syst Biol 63:263–271. doi: 10.1093/sysbio/syt106 , 2014 ). The same simulated data set is used to demonstrate the accuracy and improved convergence of the present method. We also compare performance with *BEAST for a fixed delimitation analysis on a large data set, and again show improved convergence.
Fixation probabilities in evolutionary dynamics under weak selection
In evolutionary dynamics, a key measure of a mutant trait’s success is the probability that it takes over the population given some initial mutant-appearance distribution. This “fixation probability” is difficult to compute in general, as it depends on the mutation’s effect on the organism as well as the population’s spatial structure, mating patterns, and other factors. In this study, we consider weak selection, which means that the mutation’s effect on the organism is small. We obtain a weak-selection perturbation expansion of a mutant’s fixation probability, from an arbitrary initial configuration of mutant and resident types. Our results apply to a broad class of stochastic evolutionary models, in which the size and spatial structure are arbitrary (but fixed). The problem of whether selection favors a given trait is thereby reduced from exponential to polynomial complexity in the population size, when selection is weak. We conclude by applying these methods to obtain new results for evolutionary dynamics on graphs.
Kinetic Models for Epidemic Dynamics in the Presence of Opinion Polarization
Understanding the impact of collective social phenomena in epidemic dynamics is a crucial task to effectively contain the disease spread. In this work, we build a mathematical description for assessing the interplay between opinion polarization and the evolution of a disease. The proposed kinetic approach describes the evolution of aggregate quantities characterizing the agents belonging to epidemiologically relevant states and will show that the spread of the disease is closely related to consensus dynamics distribution in which opinion polarization may emerge. In the present modelling framework, microscopic consensus formation dynamics can be linked to macroscopic epidemic trends to trigger the collective adherence to protective measures. We conduct numerical investigations which confirm the ability of the model to describe different phenomena related to the spread of an epidemic.
Control with uncertain data of socially structured compartmental epidemic models
The adoption of containment measures to reduce the amplitude of the epidemic peak is a key aspect in tackling the rapid spread of an epidemic. Classical compartmental models must be modified and studied to correctly describe the effects of forced external actions to reduce the impact of the disease. The importance of social structure, such as the age dependence that proved essential in the recent COVID-19 pandemic, must be considered, and in addition, the available data are often incomplete and heterogeneous, so a high degree of uncertainty must be incorporated into the model from the beginning. In this work we address these aspects, through an optimal control formulation of a socially structured epidemic model in presence of uncertain data. After the introduction of the optimal control problem, we formulate an instantaneous approximation of the control that allows us to derive new feedback controlled compartmental models capable of describing the epidemic peak reduction. The need for long-term interventions shows that alternative actions based on the social structure of the system can be as effective as the more expensive global strategy. The timing and intensity of interventions, however, is particularly relevant in the case of uncertain parameters on the actual number of infected people. Simulations related to data from the first wave of the recent COVID-19 outbreak in Italy are presented and discussed.
Distribution of extreme first passage times of diffusion
Many events in biology are triggered when a diffusing searcher finds a target, which is called a first passage time (FPT). The overwhelming majority of FPT studies have analyzed the time it takes a single searcher to find a target. However, the more relevant timescale in many biological systems is the time it takes the fastest searcher(s) out of many searchers to find a target, which is called an extreme FPT. In this paper, we apply extreme value theory to find a tractable approximation for the full probability distribution of extreme FPTs of diffusion. This approximation can be easily applied in many diverse scenarios, as it depends on only a few properties of the short time behavior of the survival probability of a single FPT. We find this distribution by proving that a careful rescaling of extreme FPTs converges in distribution as the number of searchers grows. This limiting distribution is a type of Gumbel distribution and involves the LambertW function. This analysis yields new explicit formulas for approximations of statistics of extreme FPTs (mean, variance, moments, etc.) which are highly accurate and are accompanied by rigorous error estimates.
Modeling the Fear Effect in Predator–Prey Interactions with Adaptive Avoidance of Predators
Recent field experiments on vertebrates showed that the mere presence of a predator would cause a dramatic change of prey demography. Fear of predators increases the survival probability of prey, but leads to a cost of prey reproduction. Based on the experimental findings, we propose a predator–prey model with the cost of fear and adaptive avoidance of predators. Mathematical analyses show that the fear effect can interplay with maturation delay between juvenile prey and adult prey in determining the long-term population dynamics. A positive equilibrium may lose stability with an intermediate value of delay and regain stability if the delay is large. Numerical simulations show that both strong adaptation of adult prey and the large cost of fear have destabilizing effect while large population of predators has a stabilizing effect on the predator–prey interactions. Numerical simulations also imply that adult prey demonstrates stronger anti-predator behaviors if the population of predators is larger and shows weaker anti-predator behaviors if the cost of fear is larger.
A reaction–diffusion within-host HIV model with cell-to-cell transmission
In this paper, a reaction–diffusion within-host HIV model is proposed. It incorporates cell mobility, spatial heterogeneity and cell-to-cell transmission, which depends on the diffusion ability of the infected cells. In the case of a bounded domain, the basic reproduction number R0 is established and shown as a threshold: the virus-free steady state is globally asymptotically stable if R0<1 and the virus is uniformly persistent if R0>1. The explicit formula for R0 and the global asymptotic stability of the constant positive steady state are obtained for the case of homogeneous space. In the case of an unbounded domain and R0>1, the existence of the traveling wave solutions is proved and the minimum wave speed c∗ is obtained, providing the mobility of infected cells does not exceed that of the virus. These results are obtained by using Schauder fixed point theorem, limiting argument, LaSalle’s invariance principle and one-side Laplace transform. It is found that the asymptotic spreading speed may be larger than the minimum wave speed via numerical simulations. However, our simulations show that it is possible either to underestimate or overestimate the spread risk R0 if the spatial averaged system is used rather than one that is spatially explicit. The spread risk may also be overestimated if we ignore the mobility of the cells. It turns out that the minimum wave speed could be either underestimated or overestimated as long as the mobility of infected cells is ignored.