Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
1,425,261 result(s) for "Mathematics"
Sort by:
Sourcebook in the mathematics of medieval Europe and North Africa /
Medieval Europe was a meeting place for the Christian, Jewish, and Islamic civilizations, and the fertile intellectual exchange of these cultures can be seen in the mathematical developments of the time. This sourcebook presents original Latin, Hebrew, and Arabic sources of medieval mathematics, and shows their cross-cultural influences. Most of the Hebrew and Arabic sources appear here in translation for the first time. Readers will discover key mathematical revelations, foundational texts, and sophisticated writings by Latin, Hebrew, and Arabic-speaking mathematicians, including Abner of Burgos's elegant arguments providing results on the conchoid--a curve previously unknown in medieval Europe; Levi ben Gershon's use of mathematical induction in combinatorial proofs; Al-Muʹtaman Ibn Hūd's extensive survey of mathematics, which included proofs of Heron's Theorem and Ceva's Theorem; and Muhyī al-Dīn al-Maghribī's interesting proof of Euclid's parallel postulate. This book includes a general introduction, section introductions, footnotes, and references. The Sourcebook in the Mathematics of Medieval Europe and North Africa will be indispensable to anyone seeking out the important historical sources of premodern mathematics. -- Inside jacket flap.
A primer on mapping class groups (Princeton mathematical series)
The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students.
Technical math for dummies
Are you a vocational student or a trade professional? This is your one-stop, hands-on guide to mastering the math you'll encounter on the job or while working toward your degree or certification.
Symmetric Markov processes, time change, and boundary theory
This book gives a comprehensive and self-contained introduction to the theory of symmetric Markov processes and symmetric quasi-regular Dirichlet forms. In a detailed and accessible manner, Zhen-Qing Chen and Masatoshi Fukushima cover the essential elements and applications of the theory of symmetric Markov processes, including recurrence/transience criteria, probabilistic potential theory, additive functional theory, and time change theory. The authors develop the theory in a general framework of symmetric quasi-regular Dirichlet forms in a unified manner with that of regular Dirichlet forms, emphasizing the role of extended Dirichlet spaces and the rich interplay between the probabilistic and analytic aspects of the theory. Chen and Fukushima then address the latest advances in the theory, presented here for the first time in any book. Topics include the characterization of time-changed Markov processes in terms of Douglas integrals and a systematic account of reflected Dirichlet spaces, and the important roles such advances play in the boundary theory of symmetric Markov processes. This volume is an ideal resource for researchers and practitioners, and can also serve as a textbook for advanced graduate students. It includes examples, appendixes, and exercises with solutions.
Freedom in mathematics
This book challenges the views put forward by Pierre Cartier, one of the anchors of the famous Bourbaki group, and Cédric Villani, one of the most brilliant mathematicians of his generation, who received the Fields Medal in 2010. Jean Dhombres, mathematician and science historian, and Gerhard Heinzmann, philosopher of science and also a specialist in mathematics engage in a fruitful dialogue with the two mathematicians, prompting readers to reflect on mathematical activity and its social consequences in history as well as in the modern world. Cédric Villani's popular success proves once again that a common awareness has developed, albeit in a very confused way, of the major role of mathematics in the construction and efficiency of natural sciences, which are at the origin of our technologies. Despite this, the idea that mathematics cannot be shared remains firmly entrenched, a perceived failing that has even been branded a lack of culture by vocal forces in the media as well as cultural and political establishment. The authors explore three major directions in their dialogue: the highly complex relationship between mathematics and reality, the subject of many debates and opposing viewpoints; the freedom that the construction of mathematics has given humankind by enabling them to develop the natural sciences as well as mathematical research; and the responsibility with which the scientific community and governments should address the role of mathematics in research and education policies.
Uniqueness of u-Gibbs Measures for Hyperbolic Skew Products on$$\\mathbb {T}^4
We study the $u$-Gibbs measures of a certain class of uniformly hyperbolic skew products on $\\mathbb{T}^4$. These systems have a strong unstable and a weak unstable directions. We show that $C^r$-dense and $C^2$-open in this set every $u$-Gibbs measure is SRB, in particular, there is only one such measure. As an application of this, we can obtain the minimality of the strong unstable foliation.
Dynamics of a kinetic model describing protein exchanges in a cell population
We consider a cell population structured by a positive real number, describing the number of P-glycoproteins carried by the cell. We are interested in the effect of those proteins on the growth of the population: those proteins are indeed involve in the resistance of cancer cells to chemotherapy drugs. To describe this dynamics, we introduce a kinetic model. We then introduce a rigorous hydrodynamic limit, showing that if the exchanges are frequent, then the dynamics of the model can be described by a system of two coupled differential equations. Finally, we also show that the kinetic model converges to a unique limit in large times. The main idea of this analysis is to use Wasserstein distance estimates to describe the effect of the kinetic operator, combined to more classical estimates on the macroscopic quantities.