Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
248,585 result(s) for "Mathematics education"
Sort by:
The philosophy of mathematics education
This survey provides a brief and selective overview of research in the philosophy of mathematics education. It asks what makes up the philosophy of mathematics education, what it means, what questions it asks and answers, and what is its overall importance and use? It provides overviews of critical mathematics education, and the most relevant modern movements in the philosophy of mathematics. A case study is provided of an emerging research tradition in one country. This is the Hermeneutic strand of research in the philosophy of mathematics education in Brazil. This illustrates one orientation towards research inquiry in the philosophy of mathematics education. It is part of a broader practice of 'philosophical archaeology': the uncovering of hidden assumptions and buried ideologies within the concepts and methods of research and practice in mathematics education. An extensive bibliography is also included.
Female teachers' math anxiety affects girls' math achievement
People's fear and anxiety about doing math--over and above actual math ability--can be an impediment to their math achievement. We show that when the math-anxious individuals are female elementary school teachers, their math anxiety carries negative consequences for the math achievement of their female students. Early elementary school teachers in the United States are almost exclusively female (>90%), and we provide evidence that these female teachers' anxieties relate to girls' math achievement via girls' beliefs about who is good at math. First- and second-grade female teachers completed measures of math anxiety. The math achievement of the students in these teachers' classrooms was also assessed. There was no relation between a teacher's math anxiety and her students' math achievement at the beginning of the school year. By the school year's end, however, the more anxious teachers were about math, the more likely girls (but not boys) were to endorse the commonly held stereotype that \"boys are good at math, and girls are good at reading\" and the lower these girls' math achievement. Indeed, by the end of the school year, girls who endorsed this stereotype had significantly worse math achievement than girls who did not and than boys overall. In early elementary school, where the teachers are almost all female, teachers' math anxiety carries consequences for girls' math achievement by influencing girls' beliefs about who is good at math.
The really useful maths book : a guide to interactive teaching
\"A rich resource which will help a teacher who likes to take risks to enable, inspire and support. - TES magazineThe Really Useful Maths book has been written for all those who want children to enjoy the challenge of learning mathematics. It presents teachers and students with exciting and varied ideas for introducing mathematics to children. With suggestions about the best ways to use resources and equipment to support learning, it describes in detail how to make learning the easy option for children. This accessible and comprehensive book covers both the practical side of mathematics and the theory and practice of mathematics teaching. Packed with ideas and activities, it is the perfect tool to help you to improve your teaching strategies. Topics covered include:numbers and the number system what teachers need to know about interactive teaching calculating consolidating new ideas and developing personal qualities shape and space measures, statistics and data handling consolidation and practice for accuracy, speed and fluency.Fully updated to take into account changes in mathematics teaching and curriculum, this new edition offers a host of new ideas for teaching, new topics, a glossary of mathematical terms and an activity matrix for easy navigation of the books practical activities. It is the perfect tool to support training and practicing primary teachers, subject specialists and mathematics coordinators in schools\"-- Provided by publisher.
The future of mathematics education since COVID-19
The COVID-19 pandemic has changed the agenda of mathematics education. This change will be analyzed by looking at three trends in mathematics education: the use of digital technology, philosophy of mathematics education, and critical mathematics education. Digital technology became a trend in mathematics education in response to the arrival of a different kind of artifact to the mathematics classroom. It was thrust into the spotlight as the pandemic suddenly moved classrooms online around the world. Challenges specific to mathematics education in this context must be addressed. The link between the COVID-19 pandemic and digital technology in education also raises epistemological issues highlighted by philosophy of mathematics education and critical mathematics education. Using the notion that the basic unit of knowledge production throughout history is humans-with-media, I discuss how humans are connected to the virus, how it has laid bare social inequality, and how it will change the agendas of these three trends in mathematics education. I highlight the urgent need to study how mathematics education happens online for children when the home environment and inequalities in access to digital technologies assume such significant roles as classes move online. We need to understand the political role of agency of artifacts such as home in collectives of humans-with-media-things, and finally we need to learn how to implement curricula that address social inequalities. This discussion is intertwined with examples.
Math at home adds up to achievement in school
With a randomized field experiment of 587 first-graders, we tested an educational intervention designed to promote interactions between children and parents relating to math. We predicted that increasing math activities at home would increase children's math achievement at school. We tested this prediction by having children engage in math story time with their parents. The intervention, short numerical story problems delivered through an iPad app, significantly increased children's math achievement across the school year compared to a reading (control) group, especially for children whose parents are habitually anxious about math. Brief, high-quality parent-child interactions about math at home help break the intergenerational cycle of low math achievement.
Helping Parents to Motivate Adolescents in Mathematics and Science: An Experimental Test of a Utility-Value Intervention
The pipeline toward careers in science, technology, engineering, and mathematics (STEM) begins to leak in high school, when some students choose not to take advanced mathematics and science courses. We conducted a field experiment testing whether a theory-based intervention that was designed to help parents convey the importance of mathematics and science courses to their high school—aged children would lead them to take more mathematics and science courses in high school. The three-part intervention consisted of two brochures mailed to parents and a Web site, all highlighting the usefulness of STEM courses. This relatively simple intervention led students whose parents were in the experimental group to take, on average, nearly one semester more of science and mathematics in the last 2 years of high school, compared with the control group. Parents are an untapped resource for increasing STEM motivation in adolescents, and the results demonstrate that motivational theory can be applied to this important pipeline problem.
Dyscalculia: From Brain to Education
Recent research in cognitive and developmental neuroscience is providing a new approach to the understanding of dyscalculia that emphasizes a core deficit in understanding sets and their numerosities, which is fundamental to all aspects of elementary school mathematics. The neural bases of numerosity processing have been investigated in structural and functional neuroimaging studies of adults and children, and neural markers of its impairment in dyscalculia have been identified. New interventions to strengthen numerosity processing, including adaptive software, promise effective evidence-based education for dyscalculic learners.