Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,889 result(s) for "Maus"
Sort by:
The emergent landscape of the mouse gut endoderm at single-cell resolution
Here we delineate the ontogeny of the mammalian endoderm by generating 112,217 single-cell transcriptomes, which represent all endoderm populations within the mouse embryo until midgestation. We use graph-based approaches to model differentiating cells, which provides a spatio-temporal characterization of developmental trajectories and defines the transcriptional architecture that accompanies the emergence of the first (primitive or extra-embryonic) endodermal population and its sister pluripotent (embryonic) epiblast lineage. We uncover a relationship between descendants of these two lineages, in which epiblast cells differentiate into endoderm at two distinct time points—before and during gastrulation. Trajectories of endoderm cells were mapped as they acquired embryonic versus extra-embryonic fates and as they spatially converged within the nascent gut endoderm, which revealed these cells to be globally similar but retain aspects of their lineage history. We observed the regionalized identity of cells along the anterior–posterior axis of the emergent gut tube, which reflects their embryonic or extra-embryonic origin, and the coordinated patterning of these cells into organ-specific territories. The developing mouse gut endoderm, mapped at single-cell resolution, reveals trajectories of cell differentiation before and during gastrulation and the emergence of regionalized cell identities along the anterior–posterior axis of the gut tube.
Molecular architecture of lineage allocation and tissue organization in early mouse embryo
During post-implantation development of the mouse embryo, descendants of the inner cell mass in the early epiblast transit from the naive to primed pluripotent state 1 . Concurrently, germ layers are formed and cell lineages are specified, leading to the establishment of the blueprint for embryogenesis. Fate-mapping and lineage-analysis studies have revealed that cells in different regions of the germ layers acquire location-specific cell fates during gastrulation 2 – 5 . The regionalization of cell fates preceding the formation of the basic body plan—the mechanisms of which are instrumental for understanding embryonic programming and stem-cell-based translational study—is conserved in vertebrate embryos 6 – 8 . However, a genome-wide molecular annotation of lineage segregation and tissue architecture of the post-implantation embryo has yet to be undertaken. Here we report a spatially resolved transcriptome of cell populations at defined positions in the germ layers during development from pre- to late-gastrulation stages. This spatiotemporal transcriptome provides high-resolution digitized in situ gene-expression profiles, reveals the molecular genealogy of tissue lineages and defines the continuum of pluripotency states in time and space. The transcriptome further identifies the networks of molecular determinants that drive lineage specification and tissue patterning, supports a role of Hippo–Yap signalling in germ-layer development and reveals the contribution of visceral endoderm to the endoderm in the early mouse embryo. Spatially resolved transcriptomes of cell populations at defined positions in the early mouse embryo reveal molecular bases of lineage specification and tissue patterning.
Basement membrane remodelling regulates mouse embryogenesis
Tissue sculpting during development has been attributed mainly to cellular events through processes such as convergent extension or apical constriction 1 , 2 . However, recent work has revealed roles for basement membrane remodelling in global tissue morphogenesis 3 – 5 . Upon implantation, the epiblast and extraembryonic ectoderm of the mouse embryo become enveloped by a basement membrane. Signalling between the basement membrane and these tissues is critical for cell polarization and the ensuing morphogenesis 6 , 7 . However, the mechanical role of the basement membrane in post-implantation embryogenesis remains unknown. Here we demonstrate the importance of spatiotemporally regulated basement membrane remodelling during early embryonic development. Specifically, we show that Nodal signalling directs the generation and dynamic distribution of perforations in the basement membrane by regulating the expression of matrix metalloproteinases. This basement membrane remodelling facilitates embryo growth before gastrulation. The establishment of the anterior–posterior axis 8 , 9 further regulates basement membrane remodelling by localizing Nodal signalling—and therefore the activity of matrix metalloproteinases and basement membrane perforations—to the posterior side of the embryo. Perforations on the posterior side are essential for primitive-streak extension during gastrulation by rendering the basement membrane of the prospective primitive streak more prone to breaching. Thus spatiotemporally regulated basement membrane remodelling contributes to the coordination of embryo growth, morphogenesis and gastrulation. Nodal signalling coordinates embryonic development before and during gastrulation by directing perforation of the basement membrane via spatiotemporal regulation of matrix metalloprotease expression.
The ENCODE Blacklist: Identification of Problematic Regions of the Genome
Functional genomics assays based on high-throughput sequencing greatly expand our ability to understand the genome. Here, we define the ENCODE blacklist- a comprehensive set of regions in the human, mouse, worm, and fly genomes that have anomalous, unstructured, or high signal in next-generation sequencing experiments independent of cell line or experiment. The removal of the ENCODE blacklist is an essential quality measure when analyzing functional genomics data.
Cell stress in cortical organoids impairs molecular subtype specification
Cortical organoids are self-organizing three-dimensional cultures that model features of the developing human cerebral cortex 1 , 2 . However, the fidelity of organoid models remains unclear 3 – 5 . Here we analyse the transcriptomes of individual primary human cortical cells from different developmental periods and cortical areas. We find that cortical development is characterized by progenitor maturation trajectories, the emergence of diverse cell subtypes and areal specification of newborn neurons. By contrast, organoids contain broad cell classes, but do not recapitulate distinct cellular subtype identities and appropriate progenitor maturation. Although the molecular signatures of cortical areas emerge in organoid neurons, they are not spatially segregated. Organoids also ectopically activate cellular stress pathways, which impairs cell-type specification. However, organoid stress and subtype defects are alleviated by transplantation into the mouse cortex. Together, these datasets and analytical tools provide a framework for evaluating and improving the accuracy of cortical organoids as models of human brain development. Single-cell RNA sequencing clarifies the development and specification of neurons in the human cortex and shows that cell stress impairs this process in cortical organoids.
Search-and-replace genome editing without double-strand breaks or donor DNA
Most genetic variants that contribute to disease 1 are challenging to correct efficiently and without excess byproducts 2 , 3 , 4 – 5 . Here we describe prime editing, a versatile and precise genome editing method that directly writes new genetic information into a specified DNA site using a catalytically impaired Cas9 endonuclease fused to an engineered reverse transcriptase, programmed with a prime editing guide RNA (pegRNA) that both specifies the target site and encodes the desired edit. We performed more than 175 edits in human cells, including targeted insertions, deletions, and all 12 types of point mutation, without requiring double-strand breaks or donor DNA templates. We used prime editing in human cells to correct, efficiently and with few byproducts, the primary genetic causes of sickle cell disease (requiring a transversion in HBB ) and Tay–Sachs disease (requiring a deletion in HEXA ); to install a protective transversion in PRNP ; and to insert various tags and epitopes precisely into target loci. Four human cell lines and primary post-mitotic mouse cortical neurons support prime editing with varying efficiencies. Prime editing shows higher or similar efficiency and fewer byproducts than homology-directed repair, has complementary strengths and weaknesses compared to base editing, and induces much lower off-target editing than Cas9 nuclease at known Cas9 off-target sites. Prime editing substantially expands the scope and capabilities of genome editing, and in principle could correct up to 89% of known genetic variants associated with human diseases. A new DNA-editing technique called prime editing offers improved versatility and efficiency with reduced byproducts compared with existing techniques, and shows potential for correcting disease-associated mutations.
A single-cell transcriptomic atlas characterizes ageing tissues in the mouse
Ageing is characterized by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death 1 . Despite rapid advances over recent years, many of the molecular and cellular processes that underlie the progressive loss of healthy physiology are poorly understood 2 . To gain a better insight into these processes, here we generate a single-cell transcriptomic atlas across the lifespan of Mus musculus that includes data from 23 tissues and organs. We found cell-specific changes occurring across multiple cell types and organs, as well as age-related changes in the cellular composition of different organs. Using single-cell transcriptomic data, we assessed cell-type-specific manifestations of different hallmarks of ageing—such as senescence 3 , genomic instability 4 and changes in the immune system 2 . This transcriptomic atlas—which we denote Tabula Muris Senis , or ‘Mouse Ageing Cell Atlas’—provides molecular information about how the most important hallmarks of ageing are reflected in a broad range of tissues and cell types. A single-cell transcriptomic atlas across the lifespan of the mouse, denoted Tabula Muris Senis , provides molecular information about the hallmarks of ageing in a range of tissues and cell types.
The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces clozapine-like interoceptive stimulus effects in rats and mice
Clozapine-N-oxide (CNO) has long been the ligand of choice for selectively activating Designer Receptors Exclusively Activated by Designer Drugs (DREADDs). However, recent studies have challenged the long-held assertion that CNO is otherwise pharmacologically inert. The present study aimed to 1) determine whether CNO is reverse-metabolized to its parent compound clozapine in mice (as has recently been reported in rats), and 2) determine whether CNO exerts clozapine-like interoceptive stimulus effects in rats and/or mice. Following administration of 10.0 mg/kg CNO, pharmacokinetic analyses replicated recent reports of back-conversion to clozapine in rats and revealed that this phenomenon also occurs in mice. In rats and mice trained to discriminate 1.25 mg/kg clozapine from vehicle, CNO (1.0–20.0 mg/kg) produced partial substitution for the clozapine stimulus on average, with full substitution being detected in some individual animals of both species at doses frequently used to activate DREADDs. The present demonstration that CNO is converted to clozapine and exerts clozapine-like behavioral effects in both mice and rats further emphasizes the need for appropriate control groups in studies employing DREADDs, and highlights the utility of the drug discrimination procedure as a tool with which to screen the off-target effects of novel DREADD agonists.
Distributed coding of choice, action and engagement across the mouse brain
Vision, choice, action and behavioural engagement arise from neuronal activity that may be distributed across brain regions. Here we delineate the spatial distribution of neurons underlying these processes. We used Neuropixels probes 1 , 2 to record from approximately 30,000 neurons in 42 brain regions of mice performing a visual discrimination task 3 . Neurons in nearly all regions responded non-specifically when the mouse initiated an action. By contrast, neurons encoding visual stimuli and upcoming choices occupied restricted regions in the neocortex, basal ganglia and midbrain. Choice signals were rare and emerged with indistinguishable timing across regions. Midbrain neurons were activated before contralateral choices and were suppressed before ipsilateral choices, whereas forebrain neurons could prefer either side. Brain-wide pre-stimulus activity predicted engagement in individual trials and in the overall task, with enhanced subcortical but suppressed neocortical activity during engagement. These results reveal organizing principles for the distribution of neurons encoding behaviourally relevant variables across the mouse brain. Recordings from 30,000 neurons in 42 brain regions are used to delineate the spatial distribution of neuronal activity underlying vision, choice, action and behavioural engagement in mice.
Bile acid metabolites control TH17 and Treg cell differentiation
Bile acids are abundant in the mammalian gut, where they undergo bacteria-mediated transformation to generate a large pool of bioactive molecules. Although bile acids are known to affect host metabolism, cancer progression and innate immunity, it is unknown whether they affect adaptive immune cells such as T helper cells that express IL-17a (T H 17 cells) or regulatory T cells (T reg cells). Here we screen a library of bile acid metabolites and identify two distinct derivatives of lithocholic acid (LCA), 3-oxoLCA and isoalloLCA, as T cell regulators in mice. 3-OxoLCA inhibited the differentiation of T H 17 cells by directly binding to the key transcription factor retinoid-related orphan receptor-γt (RORγt) and isoalloLCA increased the differentiation of T reg cells through the production of mitochondrial reactive oxygen species (mitoROS), which led to increased expression of FOXP3. The isoalloLCA-mediated enhancement of T reg cell differentiation required an intronic Foxp3 enhancer, the conserved noncoding sequence (CNS) 3; this represents a mode of action distinct from that of previously identified metabolites that increase T reg cell differentiation, which require CNS1. The administration of 3-oxoLCA and isoalloLCA to mice reduced T H 17 cell differentiation and increased T reg cell differentiation, respectively, in the intestinal lamina propria. Our data suggest mechanisms through which bile acid metabolites control host immune responses, by directly modulating the balance of T H 17 and T reg cells. Screening of a library of bile acid metabolites revealed two derivatives of lithocholic acid that act as regulators of T helper cells that express IL-17a and regulatory T cells, thus influencing host immune responses.