Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
109 result(s) for "Mayaro virus"
Sort by:
Chemical composition and anti-Mayaro virus activity of Schinus terebinthifolius fruits
Brazilian traditional medicine has explored the antiviral properties of many plant extracts, including those from the Brazilian pepper tree, Schinus terebinthifolius . In the present study, we investigated the chemical composition and anti-mayaro virus (MAYV) activity of S. terebinthifolius fruit. Extensive virucidal activity (more than 95%) was detected for the ethyl acetate extract and the isolated biflavonoids. From the ethyl acetate extract of Schinus terebinthifolius fruits, two bioflavonoids were isolated ((2S, 2″S)-2,3,2″,3″-tetrahydroamentoflavone and agathisflavone), which showed strong virucidal activity against Mayaro virus. Furthermore, several other compounds like terpenes and phenolics were identified by hyphenated techniques (GC–MS, LC–MS and HPLC–UV), as well as by mass spectrometry. Immunofluorescence assay confirmed antiviral activity and transmission electron microscopy revealed damage in viral particles treated with biflavonoids. The data suggest the direct action of the extract and the biflavonoids on the virus particles. The biflavonoids tetrahydroamentoflavone and agathisflavone had strong virucidal activity and reduced MAYV infection.
Molecular Epidemiology of Mayaro Virus among Febrile Patients, Roraima State, Brazil, 2018–2021
We detected Mayaro virus (MAYV) in 3.4% (28/822) of febrile patients tested during 2018-2021 from Roraima State, Brazil. We also isolated MAYV strains and confirmed that these cases were caused by genotype D. Improved surveillance is needed to better determine the burden of MAYV in the Amazon Region.
Mayaro Virus Pathogenesis and Transmission Mechanisms
Mayaro virus (MAYV), isolated for the first time in Trinidad and Tobago, has captured the attention of public health authorities worldwide following recent outbreaks in the Americas. It has a propensity to be exported outside its original geographical range, because of the vast distribution of its vectors. Moreover, most of the world population is immunologically naïve with respect to infection with MAYV which makes this virus a true threat. The recent invasion of several countries by Aedesalbopictus underscores the risk of potential urban transmission of MAYV in both tropical and temperate regions. In humans, the clinical manifestations of MAYV disease range from mild fever, rash, and joint pain to arthralgia. In the absence of a licensed vaccine and clinically proven therapeutics against Mayaro fever, prevention focuses mainly on household mosquito control. However, as demonstrated for other arboviruses, mosquito control is rather inefficient for outbreak management and alternative approaches to contain the spread of MAYV are therefore necessary. Despite its strong epidemic potential, little is currently known about MAYV. This review addresses various aspects of MAYV, including its epidemiology, vector biology, mode of transmission, and clinical complications, as well as the latest developments in MAYV diagnosis.
Mouse Models of Mayaro Virus
Mayaro virus (MAYV), the etiologic agent of Mayaro fever, leads patients to severe myalgia and arthralgia, which can have a major impact on public health in all the countries where the virus circulates. The emergence and dissemination of new viruses have led the scientific community to develop new in vivo models that can help in the fight against new diseases. So far, mice have been the most used animal model in studies with MAYV and have proved to be an adequate model for recapitulating several aspects of the disease observed in humans. Mice are widely used in in vivo research and, therefore, are well known in the scientific community, which has allowed for different strains to be investigated in the study of MAYV. In this review, we summarize the main studies with MAYV using mice as an experimental model and discuss how they can contribute to the advancement of the understanding of its pathogenesis and the development of new drugs and vaccines.
4′-Fluorouridine inhibits alphavirus replication and infection in vitro and in vivo
Alphaviruses including chikungunya virus (CHIKV) are mosquito-borne positive-strand RNA viruses that can cause various diseases in humans. Although compounds that inhibit CHIKV and other alphaviruses have been identified in vitro , there are no licensed antivirals against CHIKV. Here, we investigated a ribonucleoside analog, 4′-fluorouridine (4′-FlU), and demonstrated that it inhibited infectious virus production by several alphaviruses in vitro and reduced virus burden in mouse models of CHIKV and Mayaro virus infection. Our studies also indicated that 4′-FlU treatment reduced CHIKV-induced footpad swelling and reduced the production of pro-inflammatory cytokines. Inhibition in the mouse model correlated with effective oral delivery of 4′-FlU and accumulation of both 4′-FlU and its bioactive form in relevant tissues. In summary, 4′-FlU exhibits potential as a novel anti-alphavirus agent targeting the replication of viral RNA.
Near-germline human monoclonal antibodies neutralize and protect against multiple arthritogenic alphaviruses
Arthritogenic alphaviruses are globally distributed, mosquito-transmitted viruses that cause rheumatological disease in humans and include Chikungunya virus (CHIKV), Mayaro virus (MAYV), and others. Although serological evidence suggests that some antibody-mediated heterologous immunity may be afforded by alphavirus infection, the extent to which broadly neutralizing antibodies that protect against multiple arthritogenic alphaviruses are elicited during natural infection remains unknown. Here, we describe the isolation and characterization of MAYV-reactive alphavirus monoclonal antibodies (mAbs) from a CHIKV-convalescent donor. We characterized 33 human mAbs that cross-reacted with CHIKV and MAYV and engaged multiple epitopes on the E1 and E2 glycoproteins. We identified five mAbs that target distinct regions of the B domain of E2 and potently neutralize multiple alphaviruses with differential breadth of inhibition. These broadly neutralizing mAbs (bNAbs) contain few somatic mutations and inferred germline–revertants retained neutralizing capacity. Two bNAbs, DC2.M16 and DC2.M357, protected against both CHIKV- and MAYV-induced musculoskeletal disease in mice. These findings enhance our understanding of the cross-reactive and cross-protective antibody response to human alphavirus infections.
Antiviral action of aqueous extracts of propolis from Scaptotrigona aff. postica (Hymenoptera; Apidae) against Zica, Chikungunya, and Mayaro virus
The limited availability of antivirals for new highly pathogenic strains of virus has become a serious public health. Therefore, news products against these pathogens has become an urgent necessity. Among the multiple sources for news antibiotics and antivirals, insect exudates or their products has become an increasingly frequent option. Insects emerged 350 million years ago and have showed a high adaptability and resistance to the most varied biomes. Their survival for so long, in such different environments, is an indication that they have a very efficient protection against environmental infections, despite not having a developed immune system like mammals. Since the ancient civilizations, the products obtained from the bee have been of great pharmacological importance, being used as antimicrobial, anti-inflammatory, antitumor and several other functions. Investigations of biological activity of propolis have been carried out, mainly in the species Apis mellifera , and its product have showed activity against some important viruses. However, for the Meliponini species, known as stingless bees, there are few studies, either on their chemical composition or on their biological activities. The importance of studying these bees is because they come from regions with native forests, and therefore with many species of plants not yet studied, in addition to which they are regions still free of pesticides, which guarantees a greater fidelity of the obtained data. Previous studies by our group with crude hydroalcoholic extract of propolis demonstrated an intense antiviral activity against Herpes, influenza, and rubella viruses. In this work, we chose to use aqueous extracts, which eliminates the presence of other compounds besides those originally present in propolis, in addition to extracting substances different from those obtained in alcoholic extracts. Therefore, this study aimed to identify, isolate and characterize compounds with antiviral effects from aqueous propolis extracts from Scaptotrigona aff postica , in emerging viruses such as zicavirus, chikungunya, and mayaro virus. The evaluation of the antiviral activity of the crude and purified material was performed by reducing infectious foci in VERO cell cultures. The results obtained with crude propolis, indicate a high reduction of zica virus (64×) and mayaro (128×) when was used 10% v/v of propolis. The reduction of chikungunya virus was of 256 fold, even when was used 5% v/v of propolis. The chemical characterization of the compounds present in the extracts was performed by high-pressure liquid chromatography. Through the purification of propolis by HPLC and mass spectrometry, it was possible to identify and isolate a peak with antiviral activity. This substance showed activity against all viruses tested. When purified fraction was used, the reduction observed was of 16 fold for zicavirus, 32 fold for mayaro virus and 512 fold for chikungunya virus. Likewise, it was observed that the antiviral response was concentration dependent, being more intense when propolis was added 2 h after the viral infection. Now we are carrying out the chemical characterization of the purified compounds that showed antiviral action.
Review on Main Arboviruses Circulating on French Guiana, An Ultra-Peripheric European Region in South America
French Guiana (FG), a French overseas territory in South America, is susceptible to tropical diseases, including arboviruses. The tropical climate supports the proliferation and establishment of vectors, making it difficult to control transmission. In the last ten years, FG has experienced large outbreaks of imported arboviruses such as Chikungunya and Zika, as well as endemic arboviruses such as dengue, Yellow fever, and Oropouche virus. Epidemiological surveillance is challenging due to the differing distributions and behaviors of vectors. This article aims to summarize the current knowledge of these arboviruses in FG and discuss the challenges of arbovirus emergence and reemergence. Effective control measures are hampered by the nonspecific clinical presentation of these diseases, as well as the Aedes aegypti mosquito’s resistance to insecticides. Despite the high seroprevalence of certain viruses, the possibility of new epidemics cannot be ruled out. Therefore, active epidemiological surveillance is needed to identify potential outbreaks, and an adequate sentinel surveillance system and broad virological diagnostic panel are being developed in FG to improve disease management.
Mayaro virus detection by integrating sample preparation with isothermal amplification in portable devices
Mayaro virus (MAYV) is an emerging mosquito-borne alphavirus that causes clinical symptoms similar to those caused by Chikungunya virus (CHIKV), Dengue virus (DENV), and Zika virus (ZIKV). To differentiate MAYV from these viruses diagnostically, we have developed a portable device that integrates sample preparation with real-time, reverse-transcription, loop-mediated isothermal amplification (rRT-LAMP). First, we designed a rRT-LAMP assay targeting MAYV’s non-structural protein (NS1) gene and determined the limit of detection of at least 10 viral genome equivalents per reaction. The assay was specific for MAYV, without cross-reactions with CHIKV, DENV, or ZIKV. The rRT-LAMP assay was integrated with a sample preparation device (SPD) wherein virus lysis and RNA enrichment/purification were carried out on the spot, without requiring pipetting, while subsequent real-time amplification device (RAD) enables virus detection at the point of care (POC). The functions of our platform were demonstrated using purified MAYV RNA or blood samples containing viable viruses. We have used the devices for detection of MAYV in as short as 13 min, with limit of detection to as low as 10 GEs/reaction. Graphical Abstract
RT-RPA as a dual tool for detection and phylogenetic analysis of epidemic arthritogenic alphaviruses
Chikungunya (CHIKV), o’nyong-nyong (ONNV), and Mayaro (MAYV) viruses are transmitted by mosquitoes and known to cause a debilitating arthritogenic syndrome. These alphaviruses have emerged and re-emerged, leading to outbreaks in tropical and subtropical regions of Asia, South America, and Africa. Despite their prevalence, there persists a critical gap in the availability of sensitive and virus-specific point-of-care (POC) diagnostics. Traditional immunoglobulin-based tests such as enzyme-linked immunosorbent assay (ELISA) often yield cross-reactive results due to the close genetic relationship between these viruses. Molecular diagnostics such as quantitative polymerase chain reaction (qPCR) offer high sensitivity but are limited by the need for specialized laboratory equipment. Recombinase polymerase amplification (RPA), an isothermal amplification method, is a promising alternative to qPCR, providing rapid results with minimal equipment requirements. Here, we report the development and validation of three virus-specific RT-RPA-based rapid tests for CHIKV, ONNV, and MAYV. These tests demonstrated both speed and sensitivity, capable of detecting 10–100 viral copies within 20 min of amplification, without exhibiting cross-reactivity. Furthermore, we evaluated the clinical potential of these tests using serum and tissue samples from CHIKV, ONNV, and MAYV-infected mice, as well as CHIKV-infected human patients. We demonstrate that the RPA amplicons derived from the patient samples can be sequenced, enabling cost-effective molecular epidemiological studies. Our findings highlight the significance of these rapid and specific diagnostics in improving the early detection and management of these arboviral infections, particularly in resource-limited settings.