Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
465,660 result(s) for "Mechanics"
Sort by:
Dynamics near the subcritical transition of the 3D Couette flow I
The authors study small disturbances to the periodic, plane Couette flow in the 3D incompressible Navier-Stokes equations at high Reynolds number Re. They prove that for sufficiently regular initial data of size $\\epsilon \\leq c_0\\mathbf {Re}^-1$ for some universal $c_0 > 0$, the solution is global, remains within $O(c_0)$ of the Couette flow in $L^2$, and returns to the Couette flow as $t \\rightarrow \\infty $. For times $t \\gtrsim \\mathbf {Re}^1/3$, the streamwise dependence is damped by a mixing-enhanced dissipation effect and the solution is rapidly attracted to the class of \"2.5 dimensional\" streamwise-independent solutions referred to as streaks.
How mechanics shaped the modern world
This unique book presents a nontechnical view of the history of mechanics, from the Big Bang to present day. The impact of mechanics on the evolution of a variety of subjects is vividly illustrated, including astronomy, geology, astrophysics, anthropology, archeology, ancient history, Renaissance art, music, meteorology, modern structural engineering, mathematics, medicine, warfare, and sports. While enormous in scope, the subject matter is covered (with ample photographic support) at a level designed to capture the interest of both the learned and the curious. The book concludes with a creative and thoughtful examination of the current state of mechanics and possibilities for the future of mechanics. This book also: Presents an offbeat, nontechnical chronology of the history of mechanics, from the Big Bang to present day Lays out a complicated scientific subject in a rapid-fire narrative that is both interesting and informative for the non-specialist reader Covers subjects ranging from Egyptian civilization, music and musical instruments, art, and climate dynamics and demonstrates how their evolution both impacted and was impacted by humankind's understanding of mechanics Thoughtfully examines the current state of mechanics and possibilities for future research and innovation.
Entropy and the quantum II: Arizona School of Analysis with Applications, March 15-19, 2010, University of Arizona
The goal of the Entropy and the Quantum schools has been to introduce young researchers to some of the exciting current topics in mathematical physics. These topics often involve analytic techniques that can easily be understood with a dose of physical intuition. In March of 2010, four beautiful lectures were delivered on the campus of the University of Arizona. They included Isoperimetric Inequalities for Eigenvalues of the Laplacian by Rafael Benguria, Universality of Wigner Random Matrices by Laszlo Erdos, Kinetic Theory and the Kac Master Equation by Michael Loss, and Localization in Disordered Media by Gunter Stolz. Additionally, there were talks by other senior scientists and a number of interesting presentations by junior participants. The range of the subjects and the enthusiasm of the young speakers are testimony to the great vitality of this field, and the lecture notes in this volume reflect well the diversity of this school.
Contact mechanics and friction : physical principles and applications
This text introduces the associations between contact mechanics and friction, offering a deep understanding of tribology. It deals with the associated phenomena of contact, adhesion, capillary forces, friction, lubrication, and wear. The book also explores the system dynamic aspects of tribological systems, such as squeal and its suppression, as well as other types of instabilities and spatial patterns. The second edition has been expanded with a more detailed exposition of elastohydrodynamic lubrication, an updated chapter on numerical simulation methods in contact mechanics, and a new section on fretting in the chapter on wear.
Application of extended Mohr–Coulomb criterion to ductile fracture
The Mohr–Coulomb (M–C) fracture criterion is revisited with an objective of describing ductile fracture of isotropic crack-free solids. This criterion has been extensively used in rock and soil mechanics as it correctly accounts for the effects of hydrostatic pressure as well as the Lode angle parameter. It turns out that these two parameters, which are critical for characterizing fracture of geo-materials, also control fracture of ductile metals (Bai and Wierzbicki 2008; Xue 2007; Barsoum 2006; Wilkins et al. 1980). The local form of the M–C criterion is transformed/extended to the spherical coordinate system, where the axes are the equivalent strain to fracture , the stress triaxiality η, and the normalized Lode angle parameter . For a proportional loading, the fracture surface is shown to be an asymmetric function of . A detailed parametric study is performed to demonstrate the effect of model parameters on the fracture locus. It was found that the M–C fracture locus predicts almost exactly the exponential decay of the material ductility with stress triaxiality, which is in accord with theoretical analysis of Rice and Tracey (1969) and the empirical equation of Hancock and Mackenzie (1976), Johnson and Cook (1985). The M–C criterion also predicts a form of Lode angle dependence which is close to parabolic. Test results of two materials, 2024-T351 aluminum alloy and TRIP RA-K40/70 (TRIP690) high strength steel sheets, are used to calibrate and validate the proposed M–C fracture model. Another advantage of the M–C fracture model is that it predicts uniquely the orientation of the fracture surface. It is shown that the direction cosines of the unit normal vector to the fracture surface are functions of the “friction” coefficient in the M–C criterion. The phenomenological and physical sound M–C criterion has a great potential to be used as an engineering tool for predicting ductile fracture.
Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression
Uniaxial compression experiments were performed for brittle sandstone samples containing a single fissure by a rock mechanics servo-controlled testing system. Based on the experimental results of axial stress-axial strain curves, the influence of single fissure geometry on the strength and deformation behavior of sandstone samples is analyzed in detail. Compared with the intact sandstone sample, the sandstone samples containing a single fissure show the localization deformation failure. The uniaxial compressive strength, Young’s modulus and peak axial strain of sandstone samples with pre-existing single fissure are all lower than that of intact sandstone sample, which is closely related to the fissure length and fissure angle. The crack coalescence was observed and characterized from tips of pre-existing single fissure in brittle sandstone sample. Nine different crack types are identified based on their geometry and crack propagation mechanism (tensile, shear, lateral crack, far-field crack and surface spalling) for single fissure, which can be used to analyze the failure mode and cracking process of sandstone sample containing a single fissure under uniaxial compression. To confirm the subsequence of crack coalescence in sandstone sample, the photographic monitoring and acoustic emission (AE) technique were adopted for uniaxial compression test. The real-time crack coalescence process of sandstone containing a single fissure was recorded during the whole loading. In the end, the influence of the crack coalescence on the strength and deformation failure behavior of brittle sandstone sample containing a single fissure is analyzed under uniaxial compression. The present research is helpful to understand the failure behavior and fracture mechanism of engineering rock mass (such as slope instability and underground rock burst).
Lattice Boltzmann method and its applications in engineering
Lattice Boltzmann method (LBM) is a relatively new simulation technique for the modeling of complex fluid systems and has attracted interest from researchers in computational physics. Unlike the traditional CFD methods, which solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid consisting of fictive particles, and such particles perform consecutive propagation and collision processes over a discrete lattice mesh. This book will cover the fundamental and practical application of LBM. The first part of the book consists of three chapters starting form the theory of LBM, basic models, initial and boundary conditions, theoretical analysis, to improved models. The second part of the book consists of six chapters, address applications of LBM in various aspects of computational fluid dynamic engineering, covering areas, such as thermo-hydrodynamics, compressible flows, multicomponent/multiphase flows, microscale flows, flows in porous media, turbulent flows, and suspensions.