Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
229,666 result(s) for "Medical electronics."
Sort by:
Intelligent pervasive computing systems for smarter healthcare
\"This book describes the innovations in healthcare made possible by computing through bio-sensors. The reader learns how that goal is being pursued by the editors' examination of topics such as the design and development of pervasive healthcare technologies, data modeling and information management, wearable biosensors and their systems, and more. The pervasive computing paradigm offers tremendous advantages in diversified areas of healthcare research and technology. Pervasive computational support enables the optimization of medical assessment for a healthier, safer, and more productive society\"-- Provided by publisher.
Bring on the bodyNET
Electronics are set to merge with our bodies to extend our perceptions. Smartphones and watches will give way to the bodyNET1: a network of sensors, screens and smart devices woven into our clothing, worn on our skin and implanted in our bodies (see 'Superhuman powers').
Ultra low power bioelectronics : fundamentals, biomedical applications, and bio-inspired systems
\"This book provides, for the first time, a broad and deep treatment of the fields of both ultra low power electronics and bioelectronics. It discusses fundamental principles and circuits for ultra low power electronic design and their applications in biomedical systems. It also discusses how ultra energy efficient cellular and neural systems in biology can inspire revolutionary low power architectures in mixed-signal and RF electronics. The book presents a unique, unifying view of ultra low power analog and digital electronics and emphasizes the use of the ultra energy efficient subthreshold regime of transistor operation in both. Chapters on batteries, energy harvesting, and the future of energy provide an understanding of fundamental relationships between energy use and energy generation at small scales and at large scales. A wealth of insights and examples from brain implants, cochlear implants, bio-molecular sensing, cardiac devices, and bio-inspired systems make the book useful and engaging for students and practising engineers\"--Provided by publisher.
Morphing electronics enable neuromodulation in growing tissue
Bioelectronics for modulating the nervous system have shown promise in treating neurological diseases1–3. However, their fixed dimensions cannot accommodate rapid tissue growth4,5 and may impair development6. For infants, children and adolescents, once implanted devices are outgrown, additional surgeries are often needed for device replacement, leading to repeated interventions and complications6–8. Here, we address this limitation with morphing electronics, which adapt to in vivo nerve tissue growth with minimal mechanical constraint. We design and fabricate multilayered morphing electronics, consisting of viscoplastic electrodes and a strain sensor that eliminate the stress at the interface between the electronics and growing tissue. The ability of morphing electronics to self-heal during implantation surgery allows a reconfigurable and seamless neural interface. During the fastest growth period in rats, morphing electronics caused minimal damage to the rat nerve, which grows 2.4-fold in diameter, and allowed chronic electrical stimulation and monitoring for 2 months without disruption of functional behavior. Morphing electronics offers a path toward growth-adaptive pediatric electronic medicine.Viscoplastic electronic devices adapt as nerves enlarge in growing animals.
Imperceptible energy harvesting device and biomedical sensor based on ultraflexible ferroelectric transducers and organic diodes
Energy autonomy and conformability are essential elements in the next generation of wearable and flexible electronics for healthcare, robotics and cyber-physical systems. This study presents ferroelectric polymer transducers and organic diodes for imperceptible sensing and energy harvesting systems, which are integrated on ultrathin (1-µm) substrates, thus imparting them with excellent flexibility. Simulations show that the sensitivity of ultraflexible ferroelectric polymer transducers is strongly enhanced by using an ultrathin substrate, which allows the mounting on 3D-shaped objects and the stacking in multiple layers. Indeed, ultraflexible ferroelectric polymer transducers have improved sensitivity to strain and pressure, fast response and excellent mechanical stability, thus forming imperceptible wireless e-health patches for precise pulse and blood pressure monitoring. For harvesting biomechanical energy, the transducers are combined with rectifiers based on ultraflexible organic diodes thus comprising an imperceptible, 2.5-µm thin, energy harvesting device with an excellent peak power density of 3 mW·cm −3 . Next-generation energy autonomous biomedical devices must easily conform to human skin, provide accurate health monitoring and allow for scalable manufacturing. Here, the authors report ultraflexible ferroelectric transducers and organic diodes for biomedical sensing and energy harvesting. Ultraflexible ferroelectric transducers based on P(VDF:TrFE) co-polymer with optimised crystalline structure by thermal annealing are utilised as sensors for vital parameters detection and as piezoelectric nanogenerators (PENG). The PENGs were incorporated in an energy harvesting system including OTFT-based rectifying circuits and thin film capacitors on a single ultrathin substrate. Both developments could pave the way towards self-powering, imperceptible e-health systems.
Opto-VLSI devices and circuits for biomedical and healthcare applications
\"The text comprehensively discusses the latest Opto-VLSI devices and circuits useful for healthcare and biomedical applications. It further emphasizes the importance of smart technologies such as artificial intelligence, machine learning, and the internet of things for the biomedical and healthcare industries\"-- Provided by publisher.
Wireless power transfer to deep-tissue microimplants
The ability to implant electronic systems in the human body has led to many medical advances. Progress in semiconductor technology paved the way for devices at the scale of a millimeter or less (“microimplants”), but the miniaturization of the power source remains challenging. Although wireless powering has been demonstrated, energy transfer beyond superficial depths in tissue has so far been limited by large coils (at least a centimeter in diameter) unsuitable for a microimplant. Here, we show that this limitation can be overcome by a method, termed midfield powering, to create a high-energy density region deep in tissue inside of which the power-harvesting structure can be made extremely small. Unlike conventional near-field (inductively coupled) coils, for which coupling is limited by exponential field decay, a patterned metal plate is used to induce spatially confined and adaptive energy transport through propagating modes in tissue. We use this method to power a microimplant (2 mm, 70 mg) capable of closed-chest wireless control of the heart that is orders of magnitude smaller than conventional pacemakers. With exposure levels below human safety thresholds, milliwatt levels of power can be transferred to a deep-tissue (>5 cm) microimplant for both complex electronic function and physiological stimulation. The approach developed here should enable new generations of implantable systems that can be integrated into the body at minimal cost and risk.
A universal interface for plug-and-play assembly of stretchable devices
Stretchable hybrid devices have enabled high-fidelity implantable 1 – 3 and on-skin 4 – 6 monitoring of physiological signals. These devices typically contain soft modules that match the mechanical requirements in humans 7 , 8 and soft robots 9 , 10 , rigid modules containing Si-based microelectronics 11 , 12 and protective encapsulation modules 13 , 14 . To make such a system mechanically compliant, the interconnects between the modules need to tolerate stress concentration that may limit their stretching and ultimately cause debonding failure 15 – 17 . Here, we report a universal interface that can reliably connect soft, rigid and encapsulation modules together to form robust and highly stretchable devices in a plug-and-play manner. The interface, consisting of interpenetrating polymer and metal nanostructures, connects modules by simply pressing without using pastes. Its formation is depicted by a biphasic network growth model. Soft–soft modules joined by this interface achieved 600% and 180% mechanical and electrical stretchability, respectively. Soft and rigid modules can also be electrically connected using the above interface. Encapsulation on soft modules with this interface is strongly adhesive with an interfacial toughness of 0.24 N mm −1 . As a proof of concept, we use this interface to assemble stretchable devices for in vivo neuromodulation and on-skin electromyography, with high signal quality and mechanical resistance. We expect such a plug-and-play interface to simplify and accelerate the development of on-skin and implantable stretchable devices. A universal interface connects soft, rigid and encapsulation modules together to form robust, stretchable devices in a plug-and-play manner by pressing without using pastes, which will simplify and accelerate development of on-skin and implantable devices.
Biomedical Big Data Technologies, Applications, and Challenges for Precision Medicine: A Review
The explosive growth of biomedical Big Data presents both significant opportunities and challenges in the realm of knowledge discovery and translational applications within precision medicine. Efficient management, analysis, and interpretation of big data can pave the way for groundbreaking advancements in precision medicine. However, the unprecedented strides in the automated collection of large‐scale molecular and clinical data have also introduced formidable challenges in terms of data analysis and interpretation, necessitating the development of novel computational approaches. Some potential challenges include the curse of dimensionality, data heterogeneity, missing data, class imbalance, and scalability issues. This overview article focuses on the recent progress and breakthroughs in the application of big data within precision medicine. Key aspects are summarized, including content, data sources, technologies, tools, challenges, and existing gaps. Nine fields—Datawarehouse and data management, electronic medical record, biomedical imaging informatics, Artificial intelligence‐aided surgical design and surgery optimization, omics data, health monitoring data, knowledge graph, public health informatics, and security and privacy—are discussed. The explosive growth of biomedical Big Data presents both significant opportunities and challenges in the realm of knowledge discovery and translational applications within precision medicine. Efficient management, analysis, and interpretation of big data can pave the way for groundbreaking advancements in precision medicine. The review focuses on the recent progress and breakthroughs in the application of big data within precision medicine.