Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
221,073 result(s) for "Medical materials"
Sort by:
Bacterial biopolymers: from pathogenesis to advanced materials
Bacteria are prime cell factories that can efficiently convert carbon and nitrogen sources into a large diversity of intracellular and extracellular biopolymers, such as polysaccharides, polyamides, polyesters, polyphosphates, extracellular DNA and proteinaceous components. Bacterial polymers have important roles in pathogenicity, and their varied chemical and material properties make them suitable for medical and industrial applications. The same biopolymers when produced by pathogenic bacteria function as major virulence factors, whereas when they are produced by non-pathogenic bacteria, they become food ingredients or biomaterials. Interdisciplinary research has shed light on the molecular mechanisms of bacterial polymer synthesis, identified new targets for antibacterial drugs and informed synthetic biology approaches to design and manufacture innovative materials. This Review summarizes the role of bacterial polymers in pathogenesis, their synthesis and their material properties as well as approaches to design cell factories for production of tailor-made bio-based materials suitable for high-value applications.Bacteria produce diverse polymers, such as polysaccharides, polyesters, polyphosphates and extracellular DNA. In this Review, Moradali and Rehm discuss the types of bacterial polymers and their role in bacterial physiology and pathogenesis as well as their production and use as novel biomaterials.
Marine Collagen as A Promising Biomaterial for Biomedical Applications
This review focuses on the expanding role of marine collagen (MC)-based scaffolds for biomedical applications. A scaffold—a three-dimensional (3D) structure fabricated from biomaterials—is a key supporting element for cell attachment, growth, and maintenance in 3D cell culture and tissue engineering. The mechanical and biological properties of the scaffolds influence cell morphology, behavior, and function. MC, collagen derived from marine organisms, offers advantages over mammalian collagen due to its biocompatibility, biodegradability, easy extractability, water solubility, safety, low immunogenicity, and low production costs. In recent years, the use of MC as an increasingly valuable scaffold biomaterial has drawn considerable attention from biomedical researchers. The characteristics, isolation, physical, and biochemical properties of MC are discussed as an understanding of MC in optimizing the subsequent modification and the chemistries behind important tissue engineering applications. The latest technologies behind scaffold processing are assessed and the biomedical applications of MC and MC-based scaffolds, including tissue engineering and regeneration, wound dressing, drug delivery, and therapeutic approach for diseases, especially those associated with metabolic disturbances such as obesity and diabetes, are discussed. Despite all the challenges, MC holds great promise as a biomaterial for developing medical products and therapeutics.
Fake silk : the lethal history of viscose rayon
When a new technology makes people ill, how high does the body count have to be before protective steps are taken? This disturbing book tells a dark story of hazardous manufacturing, poisonous materials, environmental abuses, political machinations, and economics trumping safety concerns. It explores the century-long history of ?fake silk,? or cellulose viscose, used to produce such products as rayon textiles and tires, cellophane, and everyday kitchen sponges. Paul Blanc uncovers the grim history of a product that crippled and even served a death sentence to many industry workers while also releasing toxic carbon disulfide into the environment. Viscose, an innovative and lucrative product first introduced in the early twentieth century, quickly became a multinational corporate enterprise. Blanc investigates industry practices from the beginning through two highly profitable world wars, the midcentury export of hazardous manufacturing to developing countries, and the current ?greenwashing? of viscose as an eco-friendly product. Deeply researched and boldly presented, this book brings to light an industrial hazard whose egregious history ranks with those of asbestos, lead, and mercury.
Recent advances in regenerative biomaterials
Abstract Nowadays, biomaterials have evolved from the inert supports or functional substitutes to the bioactive materials able to trigger or promote the regenerative potential of tissues. The interdisciplinary progress has broadened the definition of ‘biomaterials’, and a typical new insight is the concept of tissue induction biomaterials. The term ‘regenerative biomaterials’ and thus the contents of this article are relevant to yet beyond tissue induction biomaterials. This review summarizes the recent progress of medical materials including metals, ceramics, hydrogels, other polymers and bio-derived materials. As the application aspects are concerned, this article introduces regenerative biomaterials for bone and cartilage regeneration, cardiovascular repair, 3D bioprinting, wound healing and medical cosmetology. Cell-biomaterial interactions are highlighted. Since the global pandemic of coronavirus disease 2019, the review particularly mentions biomaterials for public health emergency. In the last section, perspectives are suggested: (i) creation of new materials is the source of innovation; (ii) modification of existing materials is an effective strategy for performance improvement; (iii) biomaterial degradation and tissue regeneration are required to be harmonious with each other; (iv) host responses can significantly influence the clinical outcomes; (v) the long-term outcomes should be paid more attention to; (vi) the noninvasive approaches for monitoring in vivo dynamic evolution are required to be developed; (vii) public health emergencies call for more research and development of biomaterials; and (viii) clinical translation needs to be pushed forward in a full-chain way. In the future, more new insights are expected to be shed into the brilliant field—regenerative biomaterials. Graphical Abstract
Preparation of medical Mg–Zn alloys and the effect of different zinc contents on the alloy
In recent years, along with the development and application of magnesium alloys, magnesium alloys have been widely used in automotive, aerospace, medicine, sports, and other fields. In the field of medical materials, magnesium not only has the advantage of light weight, high strength, and a density similar to that of human bone, but also has good biocompatibility and promotes the growth of human bone. However, the mechanical properties and corrosion resistance of magnesium alloys need to be further improved to meet the requirements for human biodegradable implants. In this study, three alloys (mass fractions: Mg–10Zn, Mg–20Zn, and Mg–30Zn (wt.%)) were prepared using powder metallurgy by homogeneously mixing powders of the above materials in a certain amount with magnesium as the substrate through the addition of zinc elements, which also have good biocompatibility. The effect of zinc on the microstructure, mechanical properties, wear performance, and corrosion resistance of magnesium–zinc alloys was studied when the zinc content was different. The results show that compared with the traditional magnesium alloy using powder metallurgy, prepared magnesium alloy has good resistance to compression and bending, its maximum compressive stress can reach up to 318.96 MPa, the maximum bending strength reached 189.41 MPa, and can meet the mechanical properties of the alloy as a human bone-plate requirements. On the polarization curve, the maximum positive shift of corrosion potential of the specimens was 73 mv and the maximum decrease of corrosion-current density was 53.2%. From the comparison of the above properties, it was concluded that the three prepared alloys of which Mg–20% Zn had the best overall performance. Its maximum compressive stress, maximum bending strength, and corrosion-current density reached 318.96 MPa, 189.41 MPa and 2.08 × 10−5 A·cm−2 respectively, which are more suitable for use as human implant bone splints in human-body fluid environment.
Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence
Materials that exhibit X-ray-excited luminescence have great potential in radiation detection, security inspection, biomedical applications and X-ray astronomy1–5. However, high-performance materials are almost exclusively limited to ceramic scintillators, which are typically prepared under high temperatures6. Herein we report metal-free organic phosphors based on a molecular design that supports efficient triplet exciton harvesting to enhance radioluminescence. These organic scintillators exhibit a detection limit of 33 nGy s–1, which is 167 times lower than the standard dosage for X-ray medical examination and we demonstrate their potential application in X-ray radiography. These findings provide a fundamental design principle and new route for the creation of promising alternatives to incumbent inorganic scintillators. Furthermore, they offer new opportunities for development of flexible, stretchable X-ray detectors and imagers for non-destructive radiography testing and medical imaging.Organic, metal-free materials that act as efficient X-ray scintillators could bring new opportunities for X-ray imaging.
Bacterial Cellulose: Production, Modification and Perspectives in Biomedical Applications
Bacterial cellulose (BC) is ultrafine, nanofibrillar material with an exclusive combination of properties such as high crystallinity (84%–89%) and polymerization degree, high surface area (high aspect ratio of fibers with diameter 20–100 nm), high flexibility and tensile strength (Young modulus of 15–18 GPa), high water-holding capacity (over 100 times of its own weight), etc. Due to high purity, i.e., absence of lignin and hemicellulose, BC is considered as a non-cytotoxic, non-genotoxic and highly biocompatible material, attracting interest in diverse areas with hallmarks in medicine. The presented review summarizes the microbial aspects of BC production (bacterial strains, carbon sources and media) and versatile in situ and ex situ methods applied in BC modification, especially towards bionic design for applications in regenerative medicine, from wound healing and artificial skin, blood vessels, coverings in nerve surgery, dura mater prosthesis, arterial stent coating, cartilage and bone repair implants, etc. The paper concludes with challenges and perspectives in light of further translation in highly valuable medical products.
Applied machine learning as a driver for polymeric biomaterials design
Polymers are ubiquitous to almost every aspect of modern society and their use in medical products is similarly pervasive. Despite this, the diversity in commercial polymers used in medicine is stunningly low. Considerable time and resources have been extended over the years towards the development of new polymeric biomaterials which address unmet needs left by the current generation of medical-grade polymers. Machine learning (ML) presents an unprecedented opportunity in this field to bypass the need for trial-and-error synthesis, thus reducing the time and resources invested into new discoveries critical for advancing medical treatments. Current efforts pioneering applied ML in polymer design have employed combinatorial and high throughput experimental design to address data availability concerns. However, the lack of available and standardized characterization of parameters relevant to medicine, including degradation time and biocompatibility, represents a nearly insurmountable obstacle to ML-aided design of biomaterials. Herein, we identify a gap at the intersection of applied ML and biomedical polymer design, highlight current works at this junction more broadly and provide an outlook on challenges and future directions. The design of polymers for regenerative medicine could be accelerated with the help of machine learning. Here the authors note that machine learning has been applied successfully in other areas of polymer chemistry, while highlighting that data limitations must be overcome to enable widespread adoption within polymeric biomaterials.