Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
464 result(s) for "Medulloblastoma - diagnosis"
Sort by:
Medulloblastomics revisited: biological and clinical insights from thousands of patients
Medulloblastoma, a malignant brain tumour primarily diagnosed during childhood, has recently been the focus of intensive molecular profiling efforts, profoundly advancing our understanding of biologically and clinically heterogeneous disease subgroups. Genomic, epigenomic, transcriptomic and proteomic landscapes have now been mapped for an unprecedented number of bulk samples from patients with medulloblastoma and, more recently, for single medulloblastoma cells. These efforts have provided pivotal new insights into the diverse molecular mechanisms presumed to drive tumour initiation, maintenance and recurrence across individual subgroups and subtypes. Translational opportunities stemming from this knowledge are continuing to evolve, providing a framework for improved diagnostic and therapeutic interventions. In this Review, we summarize recent advances derived from this continued molecular characterization of medulloblastoma and contextualize this progress towards the deployment of more effective, molecularly informed treatments for affected patients.
Dissecting the genomic complexity underlying medulloblastoma
Medulloblastoma is the most common brain tumour in children; using whole-genome sequencing of tumour samples the authors show that the clinically challenging Group 3 and 4 tumours can be tetraploid, and reveal the expression of the first medulloblastoma fusion genes identified. The medulloblastoma genome dissected Medulloblastoma is the most common malignant brain tumour in children. Four papers published in the 2 August 2012 issue of Nature use whole-genome and other sequencing techniques to produce a detailed picture of the genetics and genomics of this condition. Notable findings include the identification of recurrent mutations in genes not previously implicated in medulloblastoma, with significant genetic differences associated with the four biologically distinct subgroups and clinical outcomes in each. Potential avenues for therapy are suggested by the identification of targetable somatic copy-number alterations, including recurrent events targeting TGFβ signalling in Group 3, and NF-κB signalling in Group 4 medulloblastomas. Medulloblastoma is an aggressively growing tumour, arising in the cerebellum or medulla/brain stem. It is the most common malignant brain tumour in children, and shows tremendous biological and clinical heterogeneity 1 . Despite recent treatment advances, approximately 40% of children experience tumour recurrence, and 30% will die from their disease. Those who survive often have a significantly reduced quality of life. Four tumour subgroups with distinct clinical, biological and genetic profiles are currently identified 2 , 3 . WNT tumours, showing activated wingless pathway signalling, carry a favourable prognosis under current treatment regimens 4 . SHH tumours show hedgehog pathway activation, and have an intermediate prognosis 2 . Group 3 and 4 tumours are molecularly less well characterized, and also present the greatest clinical challenges 2 , 3 , 5 . The full repertoire of genetic events driving this distinction, however, remains unclear. Here we describe an integrative deep-sequencing analysis of 125 tumour–normal pairs, conducted as part of the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. Tetraploidy was identified as a frequent early event in Group 3 and 4 tumours, and a positive correlation between patient age and mutation rate was observed. Several recurrent mutations were identified, both in known medulloblastoma-related genes ( CTNNB1 , PTCH1 , MLL2 , SMARCA4 ) and in genes not previously linked to this tumour ( DDX3X , CTDNEP1 , KDM6A , TBR1 ), often in subgroup-specific patterns. RNA sequencing confirmed these alterations, and revealed the expression of what are, to our knowledge, the first medulloblastoma fusion genes identified. Chromatin modifiers were frequently altered across all subgroups. These findings enhance our understanding of the genomic complexity and heterogeneity underlying medulloblastoma, and provide several potential targets for new therapeutics, especially for Group 3 and 4 patients.
Molecular subgroups of medulloblastoma: the current consensus
Medulloblastoma, a small blue cell malignancy of the cerebellum, is a major cause of morbidity and mortality in pediatric oncology. Current mechanisms for clinical prognostication and stratification include clinical factors (age, presence of metastases, and extent of resection) as well as histological subgrouping (classic, desmoplastic, and large cell/anaplastic histology). Transcriptional profiling studies of medulloblastoma cohorts from several research groups around the globe have suggested the existence of multiple distinct molecular subgroups that differ in their demographics, transcriptomes, somatic genetic events, and clinical outcomes. Variations in the number, composition, and nature of the subgroups between studies brought about a consensus conference in Boston in the fall of 2010. Discussants at the conference came to a consensus that the evidence supported the existence of four main subgroups of medulloblastoma (Wnt, Shh, Group 3, and Group 4). Participants outlined the demographic, transcriptional, genetic, and clinical differences between the four subgroups. While it is anticipated that the molecular classification of medulloblastoma will continue to evolve and diversify in the future as larger cohorts are studied at greater depth, herein we outline the current consensus nomenclature, and the differences between the medulloblastoma subgroups.
EANO–EURACAN clinical practice guideline for diagnosis, treatment, and follow-up of post-pubertal and adult patients with medulloblastoma
The European Association of Neuro-Oncology (EANO) and EUropean RAre CANcer (EURACAN) guideline provides recommendations for the diagnosis, treatment, and follow-up of post-pubertal and adult patients with medulloblastoma. The guideline is based on the 2016 WHO classification of tumours of the CNS and on scientific developments published since 1980. It aims to provide direction for diagnostic and management decisions, and for limiting unnecessary treatments and cost. In view of the scarcity of data in adults with medulloblastoma, we base our recommendations on adult data when possible, but also include recommendations derived from paediatric data if justified. Our recommendations are a resource for professionals involved in the management of post-pubertal and adult patients with medulloblastoma, for patients and caregivers, and for health-care providers in Europe. The implementation of this guideline requires multidisciplinary structures of care, and defined processes of diagnosis and treatment.
Prognostic effect of whole chromosomal aberration signatures in standard-risk, non-WNT/non-SHH medulloblastoma: a retrospective, molecular analysis of the HIT-SIOP PNET 4 trial
Most children with medulloblastoma fall within the standard-risk clinical disease group defined by absence of high-risk features (metastatic disease, large-cell/anaplastic histology, and MYC amplification), which includes 50–60% of patients and has a 5-year event-free survival of 75–85%. Within standard-risk medulloblastoma, patients in the WNT subgroup are established as having a favourable prognosis; however, outcome prediction for the remaining majority of patients is imprecise. We sought to identify novel prognostic biomarkers to enable improved risk-adapted therapies. The HIT-SIOP PNET 4 trial recruited 338 patients aged 4–21 years with medulloblastoma between Jan 1, 2001, and Dec 31, 2006, in 120 treatment institutions in seven European countries to investigate hyperfractionated radiotherapy versus standard radiotherapy. In this retrospective analysis, we assessed the remaining tumour samples from patients in the HIT-SIOP PNET 4 trial (n=136). We assessed the clinical behaviour of the molecularly defined WNT and SHH subgroups, and identified novel independent prognostic markers and models for standard-risk patients with non-WNT/non-SHH disease. Because of the scarcity and low quality of available genomic material, we used a mass spectrometry-minimal methylation classifier assay (MS-MIMIC) to assess methylation subgroup and a molecular inversion probe array to detect genome-wide copy number aberrations. Prognostic biomarkers and models identified were validated in an independent, demographically matched cohort (n=70) of medulloblastoma patients with non-WNT/non-SHH standard-risk disease treated with conventional therapies (maximal surgical resection followed by adjuvant craniospinal irradiation [all patients] and chemotherapy [65 of 70 patients], at UK Children's Cancer and Leukaemia Group and European Society for Paediatric Oncology (SIOPE) associated treatment centres between 1990 and 2014. These samples were analysed by Illumina 450k DNA methylation microarray. HIT-SIOP PNET 4 is registered with ClinicalTrials.gov, number NCT01351870. We analysed methylation subgroup, genome-wide copy number aberrations, and mutational features in 136 assessable tumour samples from the HIT-SIOP PNET 4 cohort, representing 40% of the 338 patients in the trial cohort. This cohort of 136 samples consisted of 28 (21%) classified as WNT, 17 (13%) as SHH, and 91 (67%) as non-WNT/non-SHH (we considered Group3 and Group4 medulloblastoma together in our analysis because of their similar molecular and clinical features). Favourable outcomes for WNT tumours were confirmed in patients younger than 16 years, and all relapse events in SHH (four [24%] of 17) occurred in patients with TP53 mutation (TP53mut) or chromosome 17p loss. A novel whole chromosomal aberration signature associated with increased ploidy and multiple non-random whole chromosomal aberrations was identified in 38 (42%) of the 91 samples from patients with non-WNT/non-SHH medulloblastoma in the HIT-SIOP PNET 4 cohort. Biomarkers associated with this whole chromosomal aberration signature (at least two of chromosome 7 gain, chromosome 8 loss, and chromosome 11 loss) predicted favourable prognosis. Patients with non-WNT/non-SHH medulloblastoma could be reclassified by these markers as having favourable-risk or high-risk disease. In patients in the HIT-SIOP PNET4 cohort with non-WNT/non-SHH medulloblastoma, with a median follow-up of 6·7 years (IQR 5·8–8·2), 5-year event-free survival was 100% in the favourable-risk group and 68% (95% CI 57·5–82·7; p=0·00014) in the high-risk group. In the validation cohort, with a median follow-up of 5·6 years (IQR 3·1–8·1), 5-year event-free survival was 94·7% (95% CI 85·2–100) in the favourable-risk group and 58·6% (95% CI 45·1–76·1) in the high-risk group (hazard ratio 9·41, 95% CI 1·25–70·57; p=0·029). Our comprehensive molecular investigation identified subgroup-specific risk models which allowed 69 (51%) of 134 accessible patients from the standard-risk medulloblastoma HIT-SIOP PNET 4 cohort to be assigned to a favourable-risk group. We define a whole chromosomal signature that allows the assignment of non-WNT/non-SHH medulloblastoma patients normally classified as standard-risk into favourable-risk and high-risk categories. In addition to patients younger than 16 years with WNT tumours, patients with non-WNT/non-SHH tumours with our defined whole chromosomal aberration signature and patients with SHH-TP53wild-type tumours should be considered for therapy de-escalation in future biomarker-driven, risk-adapted clinical trials. The remaining subgroups of patients with high-risk medulloblastoma might benefit from more intensive therapies. Cancer Research UK, Swedish Childhood Cancer Foundation, French Ministry of Health/French National Cancer Institute, and the German Children's Cancer Foundation.
Long-term toxic effects of proton radiotherapy for paediatric medulloblastoma: a phase 2 single-arm study
Compared with traditional photon radiotherapy, proton radiotherapy irradiates less normal tissue and might improve health outcomes associated with photon radiotherapy by reducing toxic effects to normal tissue. We did a trial to assess late complications, acute side-effects, and survival associated with proton radiotherapy in children with medulloblastoma. In this non-randomised, open-label, single-centre, phase 2 trial, we enrolled patients aged 3–21 years who had medulloblastoma. Patients had craniospinal irradiation of 18–36 Gy radiobiological equivalents (GyRBE) delivered at 1·8 GyRBE per fraction followed by a boost dose. The primary outcome was cumulative incidence of ototoxicity at 3 years, graded with the Pediatric Oncology Group ototoxicity scale (0–4), in the intention-to-treat population. Secondary outcomes were neuroendocrine toxic effects and neurocognitive toxic effects, assessed by intention-to-treat. This study is registered at ClinicalTrials.gov, number NCT00105560. We enrolled 59 patients from May 20, 2003, to Dec 10, 2009: 39 with standard-risk disease, six with intermediate-risk disease, and 14 with high-risk disease. 59 patients received chemotherapy. Median follow-up of survivors was 7·0 years (IQR 5·2–8·6). All patients received the intended doses of proton radiotherapy. The median craniospinal irradiation dose was 23·4 GyRBE (IQR 23·4–27·0) and median boost dose was 54·0 GyRBE (IQR 54·0–54·0). Four (9%) of 45 evaluable patients had grade 3–4 ototoxicity according to Pediatric Oncology Group ototoxicity scale in both ears at follow-up, and three (7%) of 45 patients developed grade 3–4 ototoxicity in one ear, although one later reverted to grade 2. The cumulative incidence of grade 3–4 hearing loss at 3 years was 12% (95% CI 4–25). At 5 years, it was 16% (95% CI 6–29). Pediatric Oncology Group hearing ototoxicity score at a follow-up of 5·0 years (IQR 2·9–6·4) was the same as at baseline or improved by 1 point in 34 (35%) of 98 ears, worsened by 1 point in 21 (21%), worsened by 2 points in 35 (36%), worsened by 3 points in six (6%), and worsened by 4 points in two (2%). Full Scale Intelligence Quotient decreased by 1·5 points (95% CI 0·9–2·1) per year after median follow-up up of 5·2 years (IQR 2·6–6·4), driven by decrements in processing speed and verbal comprehension index. Perceptual reasoning index and working memory did not change significantly. Cumulative incidence of any neuroendocrine deficit at 5 years was 55% (95% CI 41–67), with growth hormone deficit being most common. We recorded no cardiac, pulmonary, or gastrointestinal late toxic effects. 3-year progression-free survival was 83% (95% CI 71–90) for all patients. In post-hoc analyses, 5-year progression-free survival was 80% (95% CI 67–88) and 5-year overall survival was 83% (95% CI 70–90). Proton radiotherapy resulted in acceptable toxicity and had similar survival outcomes to those noted with conventional radiotherapy, suggesting that the use of the treatment may be an alternative to photon-based treatments. US National Cancer Institute and Massachusetts General Hospital.
Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas
Medulloblastoma is the most common malignant brain tumor in childhood. Molecular studies from several groups around the world demonstrated that medulloblastoma is not one disease but comprises a collection of distinct molecular subgroups. However, all these studies reported on different numbers of subgroups. The current consensus is that there are only four core subgroups, which should be termed WNT, SHH, Group 3 and Group 4. Based on this, we performed a meta-analysis of all molecular and clinical data of 550 medulloblastomas brought together from seven independent studies. All cases were analyzed by gene expression profiling and for most cases SNP or array-CGH data were available. Data are presented for all medulloblastomas together and for each subgroup separately. For validation purposes, we compared the results of this meta-analysis with another large medulloblastoma cohort ( n  = 402) for which subgroup information was obtained by immunohistochemistry. Results from both cohorts are highly similar and show how distinct the molecular subtypes are with respect to their transcriptome, DNA copy-number aberrations, demographics, and survival. Results from these analyses will form the basis for prospective multi-center studies and will have an impact on how the different subgroups of medulloblastoma will be treated in the future.
Medulloblastoma
Medulloblastoma (MB) comprises a biologically heterogeneous group of embryonal tumours of the cerebellum. Four subgroups of MB have been described (WNT, sonic hedgehog (SHH), Group 3 and Group 4), each of which is associated with different genetic alterations, age at onset and prognosis. These subgroups have broadly been incorporated into the WHO classification of central nervous system tumours but still need to be accounted for to appropriately tailor disease risk to therapy intensity and to target therapy to disease biology. In this Primer, the epidemiology (including MB predisposition), molecular pathogenesis and integrative diagnosis taking histomorphology, molecular genetics and imaging into account are reviewed. In addition, management strategies, which encompass surgical resection of the tumour, cranio-spinal irradiation and chemotherapy, are discussed, together with the possibility of focusing more on disease biology and robust molecularly driven patient stratification in future clinical trials. This Primer by Pfister and colleagues reviews the molecular genetics, diagnosis and management of medulloblastoma and touches upon the quality of life of patients and future outlooks.
Rapid, reliable, and reproducible molecular sub-grouping of clinical medulloblastoma samples
The diagnosis of medulloblastoma likely encompasses several distinct entities, with recent evidence for the existence of at least four unique molecular subgroups that exhibit distinct genetic, transcriptional, demographic, and clinical features. Assignment of molecular subgroup through routine profiling of high-quality RNA on expression microarrays is likely impractical in the clinical setting. The planning and execution of medulloblastoma clinical trials that stratify by subgroup, or which are targeted to a specific subgroup requires technologies that can be economically, rapidly, reliably, and reproducibly applied to formalin-fixed paraffin embedded (FFPE) specimens. In the current study, we have developed an assay that accurately measures the expression level of 22 medulloblastoma subgroup-specific signature genes (CodeSet) using nanoString nCounter Technology. Comparison of the nanoString assay with Affymetrix expression array data on a training series of 101 medulloblastomas of known subgroup demonstrated a high concordance (Pearson correlation r  = 0.86). The assay was validated on a second set of 130 non-overlapping medulloblastomas of known subgroup, correctly assigning 98% (127/130) of tumors to the appropriate subgroup. Reproducibility was demonstrated by repeating the assay in three independent laboratories in Canada, the United States, and Switzerland. Finally, the nanoString assay could confidently predict subgroup in 88% of recent FFPE cases, of which 100% had accurate subgroup assignment. We present an assay based on nanoString technology that is capable of rapidly, reliably, and reproducibly assigning clinical FFPE medulloblastoma samples to their molecular subgroup, and which is highly suited for future medulloblastoma clinical trials.
Classification of paediatric brain tumours by diffusion weighted imaging and machine learning
To determine if apparent diffusion coefficients (ADC) can discriminate between posterior fossa brain tumours on a multicentre basis. A total of 124 paediatric patients with posterior fossa tumours (including 55 Medulloblastomas, 36 Pilocytic Astrocytomas and 26 Ependymomas) were scanned using diffusion weighted imaging across 12 different hospitals using a total of 18 different scanners. Apparent diffusion coefficient maps were produced and histogram data was extracted from tumour regions of interest. Total histograms and histogram metrics (mean, variance, skew, kurtosis and 10th, 20th and 50th quantiles) were used as data input for classifiers with accuracy determined by tenfold cross validation. Mean ADC values from the tumour regions of interest differed between tumour types, (ANOVA P  < 0.001). A cut off value for mean ADC between Ependymomas and Medulloblastomas was found to be of 0.984 × 10 −3 mm 2  s −1 with sensitivity 80.8% and specificity 80.0%. Overall classification for the ADC histogram metrics were 85% using Naïve Bayes and 84% for Random Forest classifiers. The most commonly occurring posterior fossa paediatric brain tumours can be classified using Apparent Diffusion Coefficient histogram values to a high accuracy on a multicentre basis.